
MGIT: A MODEL VERSIONING AND MANAGEMENT SYSTEM

Wei Hao * 1 2 Daniel Mendoza * 3 2 Rafael da Silva 2 Deepak Narayanan 2 Amar Phanishayee 2

ABSTRACT

Models derived from other models are extremely common in machine learning (ML) today. For example, transfer
learning is used to create task-specific models from “pre-trained” models through finetuning. This has led to an
ecosystem where models are related to each other, sharing structure and often even parameter values. However,
it is hard to manage these model derivatives: the storage overhead of storing all derived models quickly becomes
onerous, prompting users to get rid of intermediate models that might be useful for further analysis. Additionally,
undesired behaviors in models are hard to track down (e.g., is a bug inherited from an upstream model?). In
this paper, we propose a model versioning and management system called MGit that makes it easier to store,
test, update, and collaborate on model derivatives. MGit introduces a lineage graph that records provenance
and versioning information between models, optimizations to efficiently store model parameters, as well as
abstractions over this lineage graph that facilitate relevant testing, updating and collaboration functionality. MGit
is able to reduce the lineage graph’s storage footprint by up to 7× and automatically update downstream models
in response to updates to upstream models.

1 INTRODUCTION

ML models are now deployed across a wide set of tasks
like vision, language and biology (He et al., 2016; Devlin
et al., 2018; Brown et al., 2020; Jumper et al., 2021), span-
ning different target hardware, data and label availability
regimes. ML models are served on both specialized accel-
erators in the datacenter like GPUs and TPUs, as well as
on edge devices like mobile phones (Jouppi et al., 2017;
Murshed et al., 2021); similarly, ML models can be trained
in a centralized supervised fashion where the training data
is available in a single location with associated labels, but
also in settings where a large amount of data labels are not
available, in settings where the training data is split into
disjoint data silos, and in settings where models need to be
re-trained daily on new data.

Across these disparate use cases, it has become increas-
ingly common for models to be created that depend on each
other. For example, when a large amount of supervised
data might not be available for a particular task, pretrain-
ing can be performed in a self-supervised way on a large
unlabeled dataset and then these pretrained models can be
specialized on a smaller labeled dataset (Pratt, 1992; Weiss
et al., 2016; Bommasani et al., 2021). For efficient execu-

*Equal contribution 1Columbia University 2Microsoft Re-
search 3Stanford University. Correspondence to: Deepak
Narayanan and Amar Phanishayee <dnarayanan@microsoft.com
and amar@microsoft.com>.

tion on low-powered devices like mobile phones or embed-
ded devices, full-precision models trained on datacenter ac-
celerators are often quantized, pruned and distilled (Polino
et al., 2018; Guo et al., 2021b; Hao et al., 2022). To facil-
itate model training on independent data silos, new train-
ing paradigms like federated learning have been proposed
that allow decentralized training (McMahan et al., 2017;
Bonawitz et al., 2019).

Despite the widespread use of model derivatives today, no
existing system allows for the easy management of these
related models. Existing widely-used systems and reposito-
ries like PyTorch (Paszke et al., 2019), TensorFlow (Abadi
et al., 2016) and HuggingFace (Wolf et al., 2019) support
the development and management of single models at a
time, but dependence information between different mod-
els is not stored anywhere.

We believe this is an untapped opportunity. Without auto-
mated lineage tracking, various tasks in the model manage-
ment life cycle are harder and more inefficient:

• Model storage. Many models can share parameters
exactly, or deviate from “parent” models by a small
amount, leading to redundancy in storage.

• Model debugging. It is hard to debug models that
are themselves derived from other models. Does an
undesired behavior originate in a given model or in an
upstream model?

• Model updating. It is hard to update models and
keep them in sync. If a certain model is updated,

ar
X

iv
:2

30
7.

07
50

7v
1 

 [
cs

.L
G

] 
 1

4 
Ju

l 2
02

3



MGit: A Model Versioning and Management System

RoBERTa
(masked language modeling)

RoBERTa-MNLI
(classification)

RoBERTa-SQuAD
(question answering)

(a) Adaptation.

Modelm3
cr3(m1, m2) =	m1	+	m2	

Modelm1
cr1	=	None

Modelm2
cr2	= None

Modelm4
cr4(m3)	=	…

…

Modelm3’
cr3’(m3)	=	…

Modelm4’
cr4’(m3’)	=	…

…

(b) Synthetic example.

Figure 1: Example lineage graphs. (a) MGit can be used for various applications with model derivatives (e.g., adaptation
of models to downstream tasks, federated learning, specialization to edge devices). As an example, we show adaptation.
(b) Nodes in the graph are models; a node can be associated with an optional creation function cr that specifies how the
model can be created from its parent nodes. For example, model m3 can be created by summing up m1 and m2 (contrived
example for illustrative purposes). Provenance edges are shown as solid lines, versioning edges are shown as dashed lines.
Models are created by following solid edges. Two nodes can have both provenance and versioning edges between them.

how should dependent models be updated? What if
we want to keep certain layers or operators in sync
across a collection of models as we update them?

• Model collaboration. It is hard for multiple users to
collaboratively develop models and determine if con-
current changes made to disjoint parts of the model
conflict.

In this paper, we design and build a system called MGit
to make these tasks easier. Our paper makes the following
concrete contributions.

Lineage graph. MGit uses a lineage graph data structure
to track provenance across multiple ML models through
dependency edges, and uses creation functions to option-
ally record how models are created from their parents.
MGit’s lineage graph also stores other optional metadata
like test functions that can be used for model monitoring.
A lineage graph can be created automatically from existing
model checkpoints, and also manually through a Python or
command-line interface.

Storage optimizations. MGit incorporates optimizations
to more efficiently store model parameters: it uses content-
based hashing and indirection to store parameters shared
across models efficiently, and can compress the deltas be-
tween non-shared parameters of parent and child models
efficiently with no change in underlying model accuracy.
MGit’s storage optimizations are able to compress model
checkpoints by up to 7× relative to storing each model
checkpoint separately.

Support for disparate applications. We also demonstrate
a wide set of applications that can use these abstractions
to facilitate model testing, diagnostics, updating, and col-
laborative development. We show that MGit can be used

to keep track of dependency information across fine-tuned
models, models created using federated learning, and also
models specialized for edge devices. Once constructed, the
lineage graph can be used to test models and perform diag-
nostics using a traversal primitive. This primitive can also
be used to automatically update models given upstream up-
dates. We also provide a merge primitive that supports col-
laboration use cases.

2 APPLICATIONS

MGit is useful for various applications where models are
derived from other models. We describe a few of these in
this section; this list is not intended to be exhaustive.

Adaptation. Transfer learning has been widely adopted
to specialize models to various tasks, especially in settings
where a large labeled dataset might not be available. For
example, a model trained with a masked language model-
ing objective (MLM) using self-supervision could then be
finetuned on various text classification tasks with small la-
beled datasets (Figure 1a).

Model versioning. It is often necessary to update models
(e.g., to fix an undesired behavior or to re-train models on
new training data), creating multiple model versions.

Federated learning (FL). Federated learning makes it pos-
sible to train models in a decentralized way, ensuring that
the entire training dataset does not need to be available in
a single central location like the cloud. This is advanta-
geous in application settings where privacy concerns might
preclude data being uploaded to a central repository or net-
work bandwidth is limited. Instead, models are updated
largely locally, and then coalesced periodically to obtain
the global shared model.



MGit: A Model Versioning and Management System

Specialization to edge devices. Dense full-precision mod-
els often can be too memory- or compute-intensive to run
efficiently on edge devices like mobile phones, necessitat-
ing techniques like quantization and pruning (Hao et al.,
2022) to compress the model.

Multi-task learning (MTL). Conventionally, ML mod-
els are trained on single tasks. In the multi-task learn-
ing (MTL) paradigm, a single model is trained on multi-
ple tasks, with largely shared model parameters and a few
task-specific parameters (Ruder, 2017) to improve model
generalization.

3 LINEAGE GRAPH

The main data structure in MGit is the lineage graph (Fig-
ure 1). Table 1 shows its components: nodes in the lineage
graph are individual models, and edges track provenance
and versioning information between models. The lineage
graph also tracks other metadata, such as the model type
and a unique name, which is useful for testing models, up-
dating them, and also mutating the graph.

3.1 Interface

Table 2 shows both MGit’s lower-level API that allows ac-
cess and mutation of the lineage graph, and the higher-level
API that supports more complex functionality on top of the
lineage graph such as model testing, per-model function
evaluation and automated model updating.

The MGit interface can be used from both command line
and Python. The command-line interface is analogous to
git’s command-line interface, and provides an easy way
for users to view the lineage graph, run registered tests,
etc. The Python interface provides a way to access and
mutate the lineage graph, and also perform traversals over
the models in it (with functionality that supports running
tests and updating models as a part of a traversal). To fa-
cilitate both Python and command-line interfaces, changes
to metadata are serialized to disk at the end of every oper-
ation, and de-serialized at the start of every operation. We
provide more details on the API below.

3.1.1 Node and Edge Addition

Lineage graphs have two different types of edges: prove-
nance and versioning edges. Provenance edges track how
models are created from each other. A model’s creation
function has one argument for each of the node’s “prove-
nance parents”. Versioning edges track versions of a given
model. For each edge type, every node has a list of adjacent
child nodes and a list of adjacent parent nodes. The lineage
graph is stored with adjacency lists. MGit’s API supports
node and edge addition.

Node and edge addition can be directly integrated into
larger applications. For example, a federated learning con-
troller (Konečnỳ et al., 2016) averages models trained in a
decentralized way across different workers and silos. In-
dividual “private” models can be trained on private data
independently and then merged to create a global model.
By using MGit’s Python API, new nodes (and correspond-
ing edges) can be added to the lineage graph as they are
created in code (e.g., by finetuning a pretrained model).

3.1.2 Creation Function

Each node is associated with an optional creation function
cr that specifies how the model is created from its direct
ancestors. The creation function helps facilitate automated
model updating if an upstream model in the lineage is up-
dated. Creating a new model involves calling the function
cr with the right arguments, and then calling add_edge and
/ or add_version_edge as appropriate.

Finetuning and adaptation. Finetuning and other light-
weight adaptation techniques (e.g., adapters (Rebuffi et al.,
2017), BitFit (Zaken et al., 2021)) involve initializing a new
model from the parent’s checkpoint (full checkpoint or par-
tial with parameters for certain layers copied over), and
then running training iterations (data wrapped in cr). We
show an example creation function below.

class CreationFunctionFinetuning:
def __init__(self):
self.lg, self.data_loader = mg.LineageGraph(<

filepath>), torch.DataLoader(<filepath>)

def initialize_model(self, parent_list):
self.child_model, parent_model = Model(),

parent_list[0].get_model()
// Copy parameters from parent_model.
copy_parameters(parent_model, self.child_model)
self.child_model.head = initialization(

child_head_dimensions) // Initialize head.

def run_iteration(self):
// Iterate through data using DataLoader.
batch = next(self.data_loader)
loss = cross_entropy_loss_fn(self.child_model(

batch)) // Forward pass.
// Backward pass -> Step optimizer.
loss.backward(); optimizer.step()

def __call__(self, parent_list):
self.initialize_model(parent_list)
while self.data_loader.has_next():
self.run_iteration()

return self.child_model

Edge device specialization. Quantization and pruning
also fit into this framework. For example, a simple form
of quantization can just downcast each parameter tensor,
which is easy to encode in a function cr. Distillation is
similar, but with a more complex creation function cr.



MGit: A Model Versioning and Management System

Component Description

Node ML models are represented in the lineage graph as nodes. Each node has an optional creation
function cr that tracks how the model can be created from its parents. Nodes are also associated
with other relevant metadata like the model type and a unique name.

Provenance edge Edge between a model and model(s) derived from it. Tracks how models are created. Can be
followed to update models when an upstream model is modified.

Versioning edge Edge between two consecutive versions of the same model. Used to track updates to a model, and
can be queried (e.g., to run tests on all model versions).

Table 1: Components of MGit’s lineage graph.

API Name Description

add_node(x, xn, [optional] cr) Adds a model x as a node to the lineage graph with name xn. A creation
function cr can be optionally specified.

add_edge(x, y) Adds a provenance edge between nodes x and y. Calls add_node(x) and
add_node(y) if nodes x and y do not already exist.

add_version_edge(x, y) Adds a versioning edge between nodes x and y. x and y must have the
same model type. Calls add_node if x and y do not exist.

remove_edge(x, y, type) Removes provenance or versioning (specified by type) between node x

and y.
remove_node(x) Removes node x and its sub-tree from the lineage graph. Calls

remove_edge on x and all of its parents and all edge types.

register_creation_function(x, cr) Registers a creation function cr for node x. The creation function spec-
ifies how the model x should be created from its parents. The creation
function can also be used to specify MTL groups.

register_test_function(t, tn, [

optional] x, [optional] mt)

Registers a test t with name tn either for a specific model x or for all
models of type mt (only one of x or mt should be specified).

deregister_test_function(tn, [optional

] x, [optional] mt)

De-registers a test with name tn either for a specific model x or for all
models of type mt (only one of x or mt should be specified).

traversal() Returns an iterator of individual nodes or a group of nodes encountered
in a traversal. An example traversal is BFS.

get_next_version(x) Returns the next version of model x if it exists.

merge(x1, x2) Try to automatically merge the models pointed to by x1 and x2; if not
possible, manually request conflict resolution from user.

run_tests(i, [optional] re) Runs all registered tests matching the specified optional regex re on all
nodes returned by the iterator i.

run_function(i, f) Runs function f (e.g., compute the parameter norm of the model) on all
nodes returned by the iterator i.

run_update_cascade(m, m’, skip_fn,

terminate_fn)

Trigger update cascade as a result of the model update m → m’. Nodes
are visited once all their parents are visited, starting from m with pro-
vided skip and termination functions. A new version of a model is
created if it has a registered creation function cr.

Table 2: MGit API. We show both the lower-level API that can be used to access and mutate the lineage graph directly, as
well as higher-level methods that provide more sophisticated functionality.

Multi-task learning. Typically, some parameters of a
multi-task model are shared across tasks, while some pa-
rameters are local for each task. MGit facilitates multi-task
learning by automatically synchronizing updates of shared

parameters across models. We can also use creation func-
tions to train models in a MTL fashion using MGit by spec-
ifying which parameters are shared in the creation function,
as shown below.



MGit: A Model Versioning and Management System

class CreationFunctionMultiTaskLearning:
def __init__(self):
self.lg = mg.LineageGraph(<filepath>)
self.data_loader = torch.DataLoader(<filepath>)

def initialize_model(self, parent_list):
self.child_model = Model()
parent = parent_list[0]
sibling = parent.get_children()[0]
if sibling != self:
// Share parameters with siblings.
self.lg.share_parameters(sibling.get_model(),

self.child_model)
else:
// Copy parameters from parent_model.
self.lg.copy_parameters(parent.get_model(),

self.child_model)
// Randomly initialize head.
self.child_model.head = random_initialization(

child_head_dimensions)

3.1.3 Test Functions

Similarly each node can be associated with test
functions. Test functions are registered using the
register_test_function method, either one model at a
time, or for all models of a particular type.

3.1.4 Traversals

Traversals are specified as an iterator over the lineage graph
nodes. Nodes can be visited in arbitrary orders. Simple
example traversals are BFS and DFS. Traversals can also
specify the types of edges that should be traversed. For
example, to test all versions of a particular model, we could
use a traversal that starts at the first version of the given
model and then only follows version edges. More complex
traversals like binary search (for test bisections) are also
possible using Python generators.

3.2 Graph Construction

We provide two modes for graph construction: manual and
automated.

Manual construction. Manual mode allows users to di-
rectly add nodes to the lineage graph and specify prove-
nance for them, using the provided add_node, add_edge,
add_version_edge and register_creation_function APIs.
These are available both in the command line or in Python
(for example, a FL controller implemented in Python can
register nodes and edges in code as new models are created,
or finetuning code can directly register edges between the
parent model and new model).

Automated construction. The automated mode enables
automatic extraction of dependency information between
models. This mode can speed up construction of a lineage
graph from a pool of models created outside MGit (e.g.,

pre-trained models downloaded from the web) by boot-
strapping the process without any user annotation.

We use a custom diff primitive to compute the differences
between two models, both structural (connectivity between
layers of the model) and contextual (values of parameters
in the model). diff makes no assumptions on the model’s
architecture, and can also be used for dynamic models like
MoEs (Fedus et al., 2022; Du et al., 2022) that use rout-
ing layers with learnt parameters, since diff only looks
at layer parameters and layer connectivity. After obtain-
ing both models’ DAG representations (Reed et al., 2022),
diff runs a hash-table-based graph matching algorithm, de-
scribed in the Appendix, that produces the common and
different layers and edges between models A and B. The
output contains the layers and edges to add and remove to
produce model B from model A. Structural and contex-
tual diffs are computed by comparing attributes or also pa-
rameter values. MGit calculates two scores dstructural and
dcontextual based on the number of edges in the diff output:

dstructural =
|edgesstructural

diff |
|edgesstructural

A |+ |edgesstructural
B |

dcontextual =
|edgescontextual

diff |
|edgescontextual

A |+ |edgescontextual
B |

For a model x, MGit locates the model in the graph that
has the smallest contextual and then structural divergence
score with x; this node is chosen as the parent of x. The au-
tomated algorithm only adds provenance edges; versioning
edges require user annotation. If no model is sufficiently
contextually or structurally similar, x is added as a root
(node with no parents). We show the runtime scaling of
this algorithm in Figure 3 for large lineage graphs in §6.2.

4 STORAGE OPTIMIZATIONS

A lineage graph with multiple related models can have re-
dundancy in parameter values. Here, we describe two tech-
niques to efficiently store these models, making it more
practical to store a large number of dependent models.

Content-based hashing. We make the observation that
many derived models can share parameters. To not redun-
dantly store duplicate copies of these parameters, we use
content-based hashing. MGit manages a global hash ta-
ble that stores the parameters of all models in a lineage
graph. The SHA-256 hash of each parameter tensor (using
both tensor value and its shape) is used as the hash key.

Delta compression. The non-identical parameters of par-
ent and child models might only differ slightly. This mo-
tivates the use of compression and decompression of pa-
rameter deltas, which can be sparse for similar models, for
space savings. Previous work (Hu et al., 2020) explored
various lossy and lossless compression methods for delta



MGit: A Model Versioning and Management System

Algorithm 1 Pseudocode for delta compression.

def delta_compression(m2, m1, t_thr):
// m1 and m2 are the parent and child models.
// We want to compress m1 - m2.
// t_thr is a user-configurable test accuracy
// threshold. If the model after compression
// has an accuracy difference from m1 larger than
// t_thr, model compression is rejected.

// First, run LCS to find a mapping between
// parameters of the same shape.
(P1, P2) = lcs(m1, m2)

// Calculate quantized deltas between two
// parameter sets.
D = quantize(P1, P2)

// Compressor performs lossless compression.
// Possible options are RLE, LZMA, etc.
CD, storage_saving = compressor(D)
if storage_saving < 1:
return False, None, m2

else:
P2’ = dequantize(D, P1)

// Restore parameters that are not compressed.
m2’ = m2.difference(P2).union(P2’)
if run_tests([m2’]) - run_tests([m2]) < t_thr:
return False, None, m2

else:
return True, CD, m2’

compression and concluded that combining quantization,
which converts the delta from a float array to an integer
array (lossy), with lossless compression of the subsequent
quantized delta works well for many models. MGit extends
this approach for delta compression between models in the
lineage graph.

One challenge in compressing deltas in MGit is the fact that
parent and child models in the lineage graph might not have
identical architectures. To circumvent this, we run a longest
common subsequence algorithm to compute a mapping be-
tween parameters of the model with the same shape. For
models with the same architecture, this will reduce to pa-
rameters of corresponding layers matching with each other.
Given a mapping between parameters p1 and p2 of the two
models, MGit first computes the delta ∆p between each
pair of parameters and then quantizes ∆p (Hu et al., 2020):

∆p = p1 − p2,∆pquantized =

⌊
∆p

2 · log(1 + ϵ)
+ 0.5

⌋
MGit then uses compressor and decompressor modules to
losslessly compress ∆pquantized. Different lossless compres-
sion techniques can be used like RLE (Robinson & Cherry,
1967) and LZMA (Igor, 1998); each provides different
tradeoffs between compression ratio and runtime (§6.3).

ϵ is a configurable error bound. Larger ϵ leads to more val-
ues in ∆pquantized being driven to 0, contributing to a higher
compression ratio after lossless compression, but also re-
duces the faithfulness of ∆pquantized to ∆p and introduces
larger accuracy drops. We use a default ϵ = 10−4.

MGit only accepts delta compression if the compression
results in storage saving and an accuracy drop within a
configurable threshold (if tests are registered). Each delta-
compressed parameter will be stored on disk as the com-
pressed delta along with a pointer to the parent layer to
facilitate future decompression. If not, compression is re-
jected and the uncompressed model is persisted. This pro-
cedure can be applied recursively. That is, the delta can
be computed between the layers of a child model and a
parent model that is itself delta compressed. Loading a
model instance then involves recursively decompressing up
the chain until the first ancestor node that is not delta com-
pressed. Full pseudocode is shown in Algorithm 1.

5 HIGHER-LEVEL FUNCTIONS OVER
LINEAGE GRAPH

We now describe higher-level functions that can be per-
formed over the lineage graph.

Testing. Given an already constructed lineage graph, MGit
exposes APIs to examine models in the graph. Testing can
be thought of as executing per-node test functions t as part
of a graph traversal. MGit provides a way to register func-
tions both for individual models and for all models of a spe-
cific type. Users can specify a regex re; for every node en-
countered in the traversal, all registered tests whose names
match re are run. Running the same test for multiple related
models allows users to track model regressions more easily
(e.g., all descendents of a particular model might show poor
performance on a particular test) and correlate dependency
information with model performance on various tasks. We
can also execute other per-model functions as diagnostics.
For example, we could compute the deltas between every
model and its parent(s), or measure models’ sparsity levels.

Model updating. Users can notify MGit that a model has
been updated (with the checkpoint of the new model). This
will then automatically trigger the update cascade on down-
stream dependent models. In the most basic form of model
updating, when a new version of a model is created, prove-
nance edges in the lineage graph are followed to produce
a new set of model versions for all of the model’s descen-
dants. We use a modified BFS traversal, where a node is
visited only once all of its parents have been visited, to en-
sure that the creation function is called only when all re-
quired upstream models are available. A new version of
the model is computed using the node’s registered cr func-
tion; MGit never overwrites existing models with its au-



MGit: A Model Versioning and Management System

Algorithm 2 Pseudocode for model updating.

def run_update_cascade(m, m’, skip_fn, terminate_fn):
// First, create (empty) next versions of models.
skip_fn2 = lambda x: skip_fn(x) or x == m
for x in BFS(m, skip_fn2, terminate_fn):
// Get next version of each parent of x if it

exists, otherwise get current version.
ps’ = [get_next_version(p) for p in x.parents]
x’ = x.cr.initialize(ps’)

// Add provenance and version edges, and copy
creation function.

add_edge(p’, x’) for p’ in ps’
add_version_edge(x, x’)
x’.cr = x.cr

// Next, start traversal at children of m’, and
train models by calling creation

// function. traversal_all_parents_first returns an
iterator over nodes (or group

// of nodes if using MTL) such that a node is
visited only once _all_ of its

// parents (parent MTL groups if using MTL) are
visited.

skip_fn2 = lambda x: skip_fn(x) or x == m’
for xs’ in traversal_all_parents_first(m’, skip_fn2

, term_fn):
if isinstance(xs’, list):
// Run MTL using combined creation function.
merged_cr(xs’, xs’.parents)

else:
// Otherwise, call individual model node’s

creation function.
[x’] = xs’
x’.cr(x’.parents)

tomated functionality since users might want to vet new
models. MGit’s storage optimizations ensure that multiple
versions of the same model can be served with minimal
overhead. Full pseudocode is in Algorithm 2.

We can use MTL to continuously share parameters across
models even across updates if so desired by using an ap-
propriate creation function (§3.1.2). The traversal to re-
train models needs to ensure that full MTL groups are ex-
ecuted only once all MTL groups on which they depend
also complete. Additionally, individual creation functions
cr are not called. Instead, all desired functions cr_1, cr_2,

..., cr_n are merged into cr’ that returns n new models.
Internally, this merged creation function cr’ ensures that
weights are shared, appropriate loss functions are used, etc.

Collaboration. MGit also supports collaboration work-
flows through a merge primitive. The objective of this prim-
itive is to identify if concurrent changes made to a given
model are “compatible” or not. Changes made to the same
layers of a given model need to be manually merged (akin
to a manual merge in the case of a merge conflict in git).

Is same layer changed
by both users?

Conflict
User intervention

Do layers have a
dependency?

Possible conflict
Run tests

No conflict
Automatically merge

yes

yes

no

no

Figure 2: Decision tree for merging changes. If a layer is
changed by both users, manual merging is required because
of the conflict. Otherwise, if changed layers have a depen-
dency, a conflict is possible and tests are required to verify
whether this is the case. If neither of the above conditions
is true, the merge can be done automatically.

Changes made to different layers of a model are also not
necessarily compatible: in cases of a dependency between
two layers (i.e., one layer consumes the output of the other
eventually or a downstream layer consumes the outputs of
both layers) changed by different users, additional tests are
needed to verify that the concurrent changes did not result
in a model regression.

MGit’s merge primitive helps support collaboration use
cases, where multiple users might make “edits” to the same
model concurrently. merge is given two models (models
created by concurrent edits) and their closest common an-
cestor (the original model on which changes were made
concurrently) in the lineage graph as input. It returns three
possible results:

• Conflict. At least one common layer is updated by
both changes. In this case, manual intervention is re-
quired.

• Possible conflict. Two layers changed by different
users have a “dependency”. Consequently, additional
tests are needed to verify that the concurrent changes
did not result in a model regression.

• No conflict. No common layer updated by both users,
and no dependency between the any two of the users’
changes. In this case, the merge can be processed au-
tomatically.

The decision tree shown in Figure 2 summarizes the con-
flict detection approach implemented in the merge primi-
tive. Let m1 and m2 be two changed models performed by
different users on model m. Then the above checks can be
performed by first computing d1 = diff(m, m1) and d2 =

diff(m, m2), and then performing a DFS through the mod-
els to check for dependencies between the changed layers.
If such a dependency exists, then the changes are flagged
as “possible conflict”, otherwise the changes commit.



MGit: A Model Versioning and Management System

6 EVALUATION

In this section, we evaluate MGit’s storage optimizations,
and its ability to enable functionality that would be hard to
execute without recording lineage between models. Unless
otherwise noted, experiments were run on a workstation
with 4 NVIDIA RTX A6000 GPUs and CUDA 11.7.

6.1 Lineage Graphs

Table 3 shows the lineage graphs considered in this evalu-
ation, reflecting various applications that create ML model
derivatives (§2). G1 was automatically constructed using
the algorithm outlined in §3.2. Graphs G2 through G5
were manually created using the add functions, in conjunc-
tion with the training APIs used to create the models.

G1. G1 is a lineage graph created from NLP models down-
loaded directly from the HuggingFace model hub (Hug-
gingFace). The full list of models used is:

• bert-base-cased.
• bert-base-uncased.
• aloxatel/bert-base-mnli.
• ericRosello/bert-base-uncased-finetuned-

squad-frozen-v2.
• deepset/bert-base-uncased-squad2.
• bert-large-uncased.
• bert-large-cased.
• TehranNLP-org/bert-large-mnli.
• roberta-base.
• deepset/roberta-base-squad2.
• textattack/roberta-base-MNLI.
• roberta-large.
• roberta-large-mnli.
• deepset/roberta-large-squad2.
• albert-base-v2.
• twmkn9/albert-base-v2-squad2.
• prajjwal1/albert-base-v2-mnli.
• distilbert-base-uncased.
• distilbert-base-cased.
• twmkn9/distilbert-base-uncased-squad2.
• ericRosello/distilbert-base-uncased-

finetuned-squad-frozen-v2.
• google/electra-small-generator.
• howey/electra-small-mnli.

We then ran MGit’s automated graph construction method
on these models to create a lineage graph. 22
out of 23 nodes are correctly inserted relative to a
“gold” lineage graph. The only mis-inserted model is
bert-base-uncased. The automated graph construction
function is able to correctly insert models, including some
that have frozen weights inherited from their parent model,
by computing divergence scores between model pairs.
MGit’s API allows errors made by the automated algorithm

23 46 92 184 368 736
Number of models

0

10

20

30

40

Av
er

ag
e 

ru
nt

im
e

(s
ec

on
ds

)

MGit

Figure 3: Average per-model insertion time for lineage
graphs of different sizes.

to be corrected manually by users (using the remove func-
tions in the API).

G2. We started with a vanilla RoBERTa model trained
on the standard masked language modeling (MLM) objec-
tive, and then finetuned task-specific models for each of the
GLUE tasks (Wang et al., 2018). We created 10 versions of
each task-specific model by finetuning on additional per-
turbed data (Moradi & Samwald, 2021).

G3. We trained a ResNet-50 image classification
model (He et al., 2016) on the ImageNet-1K dataset (Deng
et al., 2009) using federated learning. Each worker oper-
ates on a data silo with a subset of the 1000 labels in the
ImageNet-1K dataset. We ran experiments with 40 work-
ers (data silos), and 10 rounds of federated averaging. In
each round, 5 of 40 workers are randomly sampled.

G4. To create models that can be deployed on the edge,
we pruned three image classification models to varying de-
grees: ResNet-50, DenseNet121 (Huang et al., 2017) and
MobileNet-v3 (Howard et al., 2017). For each model archi-
tecture, we create models progressively greater sparsities in
a two-step process. In the first step, a model with sparsity
si is created by masking out the si fraction of its non-zero
parameters with lowest magnitude. We then check if the
resulting model is accurate enough, and if not, we finetune
the model on ImageNet-1K to further improve accuracy
while preserving its sparsity.

G5. We use MTL to create RoBERTa models for GLUE
tasks with shared weights. This is similar to G2.

6.2 Auto-Insertion

Figure 3 shows the average per-model insertion time for
lineage graphs of different sizes when using the auto-
insertion algorithm described in §3.2. We create larger
graphs by scaling up G2 by a desired factor: for example,
our graph with 92 models or nodes is created by replicating
each model in G2’s model pool 4 times. “Auto-inserting”
a model into the lineage graph involves a pairwise com-
parison with all other models already in the lineage graph;



MGit: A Model Versioning and Management System

Name Graph type Description # Nodes / # Edges

G1 HuggingFace NLP models downloaded from HuggingFace. 23 / 21

G2 Adaptation BERT-style models specialized for NLP tasks using fine-
tuning and other lightweight adaptation techniques. Some
models are trained using different datasets, creating mul-
tiple versions.

91 / 171

G3 Federated learning Vision models trained in a decentralized fashion using FL. 60 / 95

G4 Edge device specialization Vision models with pruned model weights for edge de-
vices.

22 / 19

G5 Multi-task learning BERT-style models specialized for NLP tasks with MTL
to enforce parameter sharing.

10 / 9

Table 3: Lineage graphs considered in evaluation.

consequently, the average per-model runtime increases as
the lineage graph becomes larger. We believe that with
large lineage graphs with hundreds of models, average in-
sertion times of 40 seconds / model are reasonable, espe-
cially when compared to the significant times required to
train models end-to-end.

6.3 Storage Optimization

We now evaluate MGit’s storage optimizations. Table 4
shows the results for various MGit configurations, combin-
ing the content-based hashing and delta compression tech-
niques described in §4. We show results for two versions of
the delta compression algorithm: one that uses LZMA for its
lossless compressor / decompressor, and another that uses
RLE instead. We also show the content-based hashing tech-
nique alone (Hash). For G4, we quantize parameters be-
fore calculating deltas so that the sparsity is preserved in
each model. Additionally, we implemented two baselines
that run LZMA on either a quantized version or the original
full model (Full and Full w/o quantization). We show
three metrics: compression ratio (larger is better), maxi-
mum accuracy delta between original uncompressed mod-
els and models in the compressed lineage graph (smaller
is better), and average compression + testing runtime per
model (smaller is better).

As a lossless storage method, content-based hashing shows
storage savings proportional to the number of parameters
duplicated across models in the lineage graph. We observe
that these numbers are 9.4%, 16.5% and 79.6% for G1, G2
and G5 respectively. G5 has more duplicated parameters
since its models were explicitly trained to share parameter
values using MTL.

For delta compression methods which are lossy due to the
quantization step, LZMA shows the best compression ratio
across all graphs.

Quantization and LZMA applied to the full models has
worse compression ratios than the default MGit approach
(compressing deltas) except for G4. There are three rea-
sons for this: first, the fraction of compressed parameters
in G4 is lower compared with G2 and G3 due to accuracy
check failures. Second, the magnitude of deltas in G4 is
larger than the deltas in other graphs on account of how the
models were derived from each other (L1 pruning instead
of finetuning). Third, the three roots models in G4 were not
compressed in MGit whereas they were in the Full base-
line. This is an optimization that can be added to MGit.

Lastly, we notice that methods with larger compression ra-
tios often have longer runtimes, but we believe an aver-
age runtime of even 10-15 minutes per model is reasonable
given long model training times. G1 takes particularly long
because we ran tests on CPUs as opposed to on GPUs.

6.4 Functionality

MGit enables functionality that is hard to perform without
a model management system.

We found MGit to be useful in testing models by provid-
ing a way to combine dependency information with testing
functions. For example, MGit facilitates running test bisec-
tions, searching for the first model in a lineage chain which
fails a particular test. In the best case, we found that failing
models can be found as much as 1.5× faster using test bi-
sections. We expect this runtime improvement to be larger
for deeper lineage chains where asymptotic improvements
matter more.

MGit is also able to leverage its lineage graph and cre-
ation functions to train models that share state. G5 was
trained using MTL (§3.1.2) to create RoBERTa models for
9 different GLUE tasks (Wang et al., 2018); the models in
G5 shared 98% of their parameters (only parameters in the
model heads were not shared).



MGit: A Model Versioning and Management System

Graph Compression technique Comp. ratio (↑) Accuracy ∆ (↓) Per-model runtime (↓)
Max. Avg.

G1

MGit (LZMA + Hash) 2.14 0.09 0.01 35.7 mins
MGit (RLE + Hash) 1.13 1.02 0.08 30.9 mins
MGit (Hash) 1.05 0.00 0.00 12.0 mins
Full 1.83 0.08 0.00 36.5 mins
Full w/o quantization 0.87 0.00 0.00 29.8 mins

G2

MGit (LZMA + Hash) 5.35 0.01 0.00 7.4 mins
MGit (RLE + Hash) 1.84 0.01 0.00 4.1 mins
MGit (Hash) 1.01 0.00 0.00 0.1 min
Full 1.85 0.00 0.00 14.6 mins
Full w/o quantization 0.78 0.00 0.00 3.8 mins

G3

MGit (LZMA + Hash) 6.96 0.11 0.01 2.5 mins
MGit (RLE + Hash) 3.11 0.49 0.03 2.4 mins
MGit (Hash) 1.00 0.00 0.00 1.1 mins
Full 2.29 0.25 0.06 4.0 mins
Full w/o quantization 0.72 0.06 0.01 2.8 mins

G4

MGit (LZMA + Hash) 2.57 0.35 0.07 2.5 mins
MGit (RLE + Hash) 2.04 0.35 0.07 2.5 mins
MGit (Hash) 1.00 0.00 0.00 1.1 mins
Full 2.57 0.37 0.07 3.0 mins
Full w/o quantization 1.47 0.07 0.01 2.6 mins

G5 MGit (Hash) 4.93 0.00 0.00 0.1 min

Table 4: Compression ratio, maximum / average accuracy delta across models in lineage graph, and per-model runtime of
delta compression techniques for various lineage graphs. Full is the approach of using quantization and LZMA on full
models instead of the deltas.

We also evaluate MGit’s automated model updating func-
tionality (run_update_cascade API). For G2 and G5, we try
to more efficiently build models for each task resilient to
various perturbations by finetuning the parent MLM model
(m) with perturbed data, thus generating a new model m’.
We then run run_update_cascade to generate new children
m1’, m2’, . . ., m10’ from m’ while reusing the creation func-
tions that facilitated the creation of m1, etc. from m. These
creation functions do not use perturbed data at all; any abil-
ity of m1’, m2’, . . ., m10’ to perform well on the perturbed
GLUE tasks will be passed down from m’. Figure 4 shows
the accuracy differences between the new models m1’, m2
’, . . ., m10’ and the original models m1, m2, . . ., m10 for all
GLUE tasks and data perturbations. For most perturbations
and GLUE tasks, MGit shows superior performance (accu-
racy difference > 0).

7 RELATED WORK

We now briefly discuss other work related to MGit and the
model management problem it tackles.

Adaptation. Transfer learning has been used to wide ef-

fect to adapt models to various tasks, especially in regimes
where a large amount of supervised data might not be
available. The most widely adopted model adaptation ap-
proach is full finetuning, where all parameters of a pre-
trained model are updated while running forward and back-
ward passes on task-specific inputs. To reduce storage re-
quirements when adapting a model to a new task, many
lightweight adaptation techniques have been introduced.
Instead, of updating the entire model, Houlsby et al. (2019)
introduces adapter modules (small MLPs) within the model
architecture (freezing all other weights); this approach en-
sures that the only new task-specific parameters are in
the adapter modules, which are small. BitFit (Ben Za-
ken et al., 2022) proposes only updating the bias vectors
for adaptation to a new task. Diff pruning (Guo et al.,
2021a) adds sparse vectors to the parameters, while LoRA
(Hu et al., 2022) adds low-rank vectors to the model pa-
rameters. Given this rapid proliferation of lightweight
adaptation techniques, PetS (Zhou et al., 2022) proposes
a general abstraction for lightweight adaptation with the
goal of improving serving efficiency of transformer mod-
els creating using such techniques. MGit provides a con-
venient abstraction to manage, develop and store lineage of



MGit: A Model Versioning and Management System

COLAMNLI
MRPCQNLI QQP RTE SST2 STSB WNLI

−20

−10

0

10

20
Ac

cu
ra

cy
 d

iff
er

en
ce

 (%
)

(a) G2.

COLAMNLI
MRPCQNLI QQP RTE SST2 STSB WNLI

−20

−10

0

10

20

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

(b) G5.

Figure 4: Accuracy difference between models produced
by MGit’s automated model updating feature and base
models for various GLUE tasks.

lightweight-adapted models; leveraging lineage for infer-
ence runtime improvements is interesting future work.

Debugging in ML. Testing and debugging is of signifi-
cant importance when deploying machine learning models.
Checklist (Ribeiro et al., 2020) observed many state-of-
the-art models often exhibit bugs and make incorrect pre-
dictions; to help reduce these, Checklist proposes templates
and abstractions for manually developing tests for NLP
models. AdaTest (Ribeiro & Lundberg, 2022) proposes a
human-in-the-loop test generation solution that uses a ML
model to recommend test cases for NLP models. MLEXray
(Qiu et al., 2022) observes that models deployed at the edge
can perform poorly unexpectedly and proposes a system
to facilitate monitoring and debugging models at the edge.
Model assertions (Kang et al., 2020) identifies various in-
variants that should hold for model outputs corresponding
to related inputs (e.g., frames of a video stream) and pro-
poses ways to correct for any discrepancies that might oc-
cur. MGit combines such per-model testing solutions with
the notion of a lineage graph, helping developers study fail-
ures across different models.

Model patching. After undesired behaviors are identified,
models need to be subsequently updated. Cheap model
patching approaches have become a target of much study,
since training a model from scratch is often prohibitively
expensive and time-consuming. This is a challenging prob-
lem since we often want to keep such changes scoped, mak-
ing sure to only update the behavior intended while not

changing already correct predictions. AdaTest (Ribeiro
& Lundberg, 2022) provides a mechanism to generate new
training data with a human-in-the-loop for bug fixing in
NLP models. External learned editors (Cao et al., 2021;
Mitchell et al., 2021; Hase et al., 2021) can be used to
modify raw finetuning gradients to scope changes. MGit
provides a framework to automatically update models that
might depend on a buggy model, obviating the need to
manually update them.

Model repositories. ModelHub (Miao et al., 2016) also
suggests the usefulness of interacting with ML models us-
ing a git-like interface. However, ModelHub is not in-
tended for derived ML models, and also does not present
solutions for automated model updating, testing, and col-
laboration. HuggingFace Model Hub (HuggingFace; Wolf
et al., 2019) is a widely-used model repository where users
can upload their trained models; however, it does not record
provenance information.

8 CONCLUSION

Models are increasingly derived from other machine learn-
ing models as the number of deployment settings of ML
rises. This greatly complicates modern ML workflows: di-
agnosing and updating models is more challenging than
ever on account of these dependencies. In this paper, we
propose a system called MGit that tries to easen this bur-
den using a lineage graph that records dependencies be-
tween models and abstractions over the lineage graph that
facilitate easier testing, updating and collaboration. MGit’s
storage optimizations reduce the model storage footprint by
up to 7×.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
TensorFlow: A System for Large-Scale Machine Learn-
ing. In 12th USENIX Symposium on Operating Systems
Design and Implementation, pp. 265–283, 2016.

Ben Zaken, E., Goldberg, Y., and Ravfogel, S. BitFit:
Simple Parameter-efficient Fine-tuning for Transformer-
based Masked Language-models. In Proceedings of the
60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pp. 1–9,
Dublin, Ireland, May 2022. Association for Computa-
tional Linguistics.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J.,
Bosselut, A., Brunskill, E., et al. On the Opportuni-
ties and Risks of Foundation Models. arXiv preprint
arXiv:2108.07258, 2021.



MGit: A Model Versioning and Management System

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., In-
german, A., Ivanov, V., Kiddon, C., Konečnỳ, J., Maz-
zocchi, S., McMahan, B., et al. Towards Federated
Learning at Scale: System Design. Proceedings of Ma-
chine Learning and Systems, 1:374–388, 2019.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry,
G., Askell, A., et al. Language Models are Few-Shot
Learners. Advances in Neural Information Processing
Systems, 33:1877–1901, 2020.

Cao, N. D., Aziz, W., and Titov, I. Editing factual knowl-
edge in language models. In EMNLP (1), pp. 6491–
6506, 2021. URL https://doi.org/10.18653/v1/

2021.emnlp-main.522.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. ImageNet: A Large-Scale Hierarchical Image
Database. In 2009 IEEE conference on computer vision
and pattern recognition, pp. 248–255. Ieee, 2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova,
K. BERT: Pre-Training of Deep Bidirectional Trans-
formers for Language Understanding. arXiv preprint
arXiv:1810.04805, 2018.

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D.,
Xu, Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O.,
et al. GLaM: Efficient Scaling of Language Models with
Mixture-of-Experts. In International Conference on Ma-
chine Learning, pp. 5547–5569. PMLR, 2022.

Fedus, W., Zoph, B., and Shazeer, N. Switch Transform-
ers: Scaling to Trillion Parameter Models with Simple
and Efficient Sparsity. The Journal of Machine Learning
Research, 23(1):5232–5270, 2022.

Guo, D., Rush, A., and Kim, Y. Parameter-Efficient Trans-
fer Learning with Diff Pruning. In Proceedings of the
59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Con-
ference on Natural Language Processing (Volume 1:
Long Papers), pp. 4884–4896, Online, 2021a. Associ-
ation for Computational Linguistics.

Guo, P., Hu, B., and Hu, W. Mistify: Automating DNN
Model Porting for On-Device Inference at the Edge. In
18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21), pp. 705–719, 2021b.

Hao, W., Awatramani, A., Hu, J., Mao, C., Chen, P.-C.,
Cidon, E., Cidon, A., and Yang, J. A Tale of Two Mod-
els: Constructing Evasive Attacks on Edge Models. Pro-
ceedings of Machine Learning and Systems, 4:414–429,
2022.

Hase, P., Diab, M., Celikyilmaz, A., Li, X., Kozareva, Z.,
Stoyanov, V., Bansal, M., and Iyer, S. Do language mod-
els have beliefs? methods for detecting, updating, and
visualizing model beliefs, 2021. URL https://arxiv.

org/abs/2111.13654.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Resid-
ual Learning for Image Recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778, 2016.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
de Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-Efficient Transfer Learning for NLP.
In ICML, 2019.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., and Adam,
H. MobileNets: Efficient Convolutional Neural Net-
works for Mobile Vision Applications. arXiv preprint
arXiv:1704.04861, 2017.

Hu, E. J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., Wang, L., and Chen, W. LoRA: Low-Rank
Adaptation of Large Language Models. In International
Conference on Learning Representations, 2022.

Hu, Z., Zou, X., Xia, W., Jin, S., Tao, D., Liu, Y., Zhang,
W., and Zhang, Z. Delta-DNN: Efficiently Compress-
ing Deep Neural Networks via Exploiting Floats Sim-
ilarity. In 49th International Conference on Parallel
Processing-ICPP, pp. 1–12, 2020.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely Connected Convolutional Networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

HuggingFace. HuggingFace Model Hub. https://

huggingface.co/models.

Igor, P. The Algorithm: Lempel-Ziv-Markov Chain. 1998.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., et al. In-Datacenter Performance Analysis of a Ten-
sor Processing Unit. In Proceedings of the 44th annual
international symposium on computer architecture, pp.
1–12, 2017.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov,
M., Ronneberger, O., Tunyasuvunakool, K., Bates, R.,
Žídek, A., Potapenko, A., et al. Highly Accurate Pro-
tein Structure Prediction with AlphaFold. Nature, 596
(7873):583–589, 2021.

Kang, D., Raghavan, D., Bailis, P., and Zaharia, M. Model
Assertions for Monitoring and Improving ML Models.

https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://arxiv.org/abs/2111.13654
https://arxiv.org/abs/2111.13654
https://huggingface.co/models
https://huggingface.co/models


MGit: A Model Versioning and Management System

Proceedings of Machine Learning and Systems, 2:481–
496, 2020.

Konečnỳ, J., McMahan, H. B., Yu, F. X., Richtárik, P.,
Suresh, A. T., and Bacon, D. Federated Learning: Strate-
gies for Improving Communication Efficiency. arXiv
preprint arXiv:1610.05492, 2016.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In Artificial
intelligence and statistics, pp. 1273–1282. PMLR, 2017.

Miao, H., Li, A., Davis, L. S., and Deshpande, A. Model-
Hub: Towards Unified Data and Lifecycle Management
for Deep Learning. arXiv preprint arXiv:1611.06224,
2016.

Mitchell, E., Lin, C., Bosselut, A., Finn, C., and Manning,
C. D. Fast model editing at scale. CoRR, 2021. URL
https://arxiv.org/pdf/2110.11309.pdf.

Moradi, M. and Samwald, M. Evaluating the Robustness of
Neural Language Models to Input Perturbations. In Pro-
ceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 1558–1570. Asso-
ciation for Computational Linguistics, 2021.

Murshed, M. S., Murphy, C., Hou, D., Khan, N., Anan-
thanarayanan, G., and Hussain, F. Machine Learning at
the Network Edge: A Survey. ACM Computing Surveys
(CSUR), 54(8):1–37, 2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., et al. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. Advances in Neu-
ral Information Processing Systems, 32, 2019.

Polino, A., Pascanu, R., and Alistarh, D. Model Compres-
sion via Distillation and Quantization. arXiv preprint
arXiv:1802.05668, 2018.

Pratt, L. Y. Discriminability-based Transfer between Neu-
ral Networks. Advances in Neural Information Process-
ing Systems, 5, 1992.

Qiu, H., Vavelidou, I., Li, J., Pergament, E., Warden, P.,
Chinchali, S., Asgar, Z., and Katti, S. ML-EXray: Visi-
bility into ML Deployment on the Edge. Proceedings of
Machine Learning and Systems, 4:337–351, 2022.

Rebuffi, S.-A., Bilen, H., and Vedaldi, A. Learning Multi-
ple Visual Domains with Residual Adapters. Advances
in Neural Information Processing Systems, 30, 2017.

Reed, J., DeVito, Z., He, H., Ussery, A., and Ansel, J.
torch. fx: Practical Program Capture and Transformation

for Deep Learning in Python. Proceedings of Machine
Learning and Systems, 4:638–651, 2022.

Ribeiro, M. T. and Lundberg, S. Adaptive Testing and De-
bugging of NLP Models. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 3253–3267,
Dublin, Ireland, 2022. Association for Computational
Linguistics.

Ribeiro, M. T., Wu, T., Guestrin, C., and Singh, S. Be-
yond Accuracy: Behavioral Testing of NLP Models with
CheckList. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pp. 4902–4912, Online, 2020. Association for Compu-
tational Linguistics.

Robinson, A. and Cherry, C. Results of a Prototype Tele-
vision Bandwidth Compression Scheme. Proceedings of
the IEEE, 55(3):356–364, 1967. doi: 10.1109/PROC.
1967.5493.

Ruder, S. An Overview of Multi-Task Learning in Deep
Neural Networks. arXiv preprint arXiv:1706.05098,
2017.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. GLUE: A Multi-Task Benchmark and
Analysis Platform for Natural Language Understanding.
arXiv preprint arXiv:1804.07461, 2018.

Weiss, K., Khoshgoftaar, T. M., and Wang, D. A Survey of
Transfer Learning. Journal of Big data, 3(1):1–40, 2016.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtow-
icz, M., et al. Huggingface’s Transformers: State-of-
the-Art Natural Language Processing. arXiv preprint
arXiv:1910.03771, 2019.

Zaken, E. B., Ravfogel, S., and Goldberg, Y. BitFit: Sim-
ple Parameter-Efficient Fine-Tuning for Transformer-
Based Masked Language Models. arXiv preprint
arXiv:2106.10199, 2021.

Zhou, Z., Wei, X., Zhang, J., and Sun, G. PetS: A Unified
Framework for Parameter-Efficient Transformers Serv-
ing. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22), pp. 489–504, Carlsbad, CA, 2022.
USENIX Association.

https://arxiv.org/pdf/2110.11309.pdf


MGit: A Model Versioning and Management System

A PSEUDOCODE FOR diff PRIMITIVE

diff is a key MGit primitive that powers its automated
graph construction algorithm. Algorithm 3 shows its im-
plementation.

Algorithm 3 Peudocode for diff between two models m1
and m2.

def module_diff(m1, m2):
// m1 and m2 are DAG representations of the input
// models. DAG nodes are torch.nn.module layers
// (e.g., Linear, Conv2D). An edge between two
// nodes indicates dataflow.
// We want to compute the diff, i.e., the nodes and
// edges to remove and add to convert m1 to m2.

// Compute hash tables of nodes/edges for m1 and m2
// where values are node / edge lists sorted in
// topological order. The hash of an edge is the
// hash of its end points.
N1, E1 = generate_hash_table(m1)
N2, E2 = generate_hash_table(m2)

// Iterate over E1: if a hash exists in E2,
// greedily match each edge in two edge lists.
// Before deciding on a matching, check the nodes
// in these edges and only commit when
// corresponding nodes have the same matched
// status. Matching a node in m1 with more than one
// node in m2 is not allowed.
Matches_N, Matches_E = {}, {}
for hash in E1:
es1 = E1[hash], es2 = E2[hash]
for e1 in es1:
for e2 in es2:
if check(e1, e2):
e1[0].matched, e1[1].matched = True, True
e2[0].matched, e2[1].matched = True, True
Matches_N.add((e1[0],e2[0]), (e1[1],e2[1]))
Matches_E.add((e1,e2))
E2[hash].drop(e2)

es2 = E2[hash]

// Match nodes that do not belong to common edges.
for hash in N1:
ns1 = [n1 in N1[hash] if n1.matched = False]
ns2 = [n2 in N2[hash] if n2.matched = False]
for i in range(min(len(ns1, ns2))):

ns1[i].matched, ns2[i].matched = True, True
Matches_N.add((ns1[i], ns2[i]))

// Sort Matches_N/E by topological order of nodes /
// edges in m1 and remove inverse matches of node /
// edges: if n1 in m1 is matched with an n2 in m2
// after one of n1’s preceding nodes in m1 has been
// matched with a node that appears later than the
// suggested n2.
// E.g., A-B-A-C and A-B-C-A should have a node
// matching of only {A, B, C (or A)}.
Matches_N = filter(sort(Matches_N))
Matches_E = filter(sort(Matches_E))

// Add_N/E are the unmatched nodes/edges in m2.
// Del_N/E are the unmatched nodes/edges in m1.
Add_E = E2.difference(e2 in Matches_E)
Del_E = E1.difference(e1 in Matches_E)
Add_N = N2.difference(n2 in Matches_N)
Del_N = N1.difference(n1 in Matches_N)
return Add_E, Add_N, Del_E, Del_N


