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Abstract

Modern deep neural network (DNN) training jobs use com-

plex and heterogeneous software/hardware stacks. The effi-

cacy of software-level optimizations can vary significantly

when used in different deployment configurations. It is oner-

ous and error-prone for ML practitioners and system develop-

ers to implement each optimization separately, and determine

which ones will improve performance in their own configu-

rations. Unfortunately, existing profiling tools do not aim to

answer predictive questions such as "How will optimization

X affect the performance of my model?". We address this crit-

ical limitation, and proposes a new profiling tool, Daydream,

to help programmers efficiently explore the efficacy of DNN

optimizations. Daydream models DNN execution with a fine-

grained dependency graph based on low-level traces collected

by CUPTI [49], and predicts runtime by simulating execution

based on the dependency graph. Daydream maps the low-level

traces using DNN domain-specific knowledge and introduces

a set of graph-transformation primitives that can easily model

a wide variety of optimizations. We show that Daydream is

able to model most mainstream DNN optimization techniques

and accurately predict the efficacy of optimizations that will

result in significant performance improvements.

1 Introduction

Recent years have witnessed the co-evolution of deep neu-

ral network (DNN) algorithms and the underlying hardware

and software design. ML researchers have developed many

important models [20, 26, 27, 73] at a rapid pace, creating

a huge demand for computation power [69]. To meet the

demand for fast DNN computation, computer architects re-

spond with new, AI-optimized GPUs (e.g., NVidia Turing

architecture [56]) and various domain-specific hardware ac-

celerators from FPGAs (e.g., Microsoft Catapult [64]) to

ASICs (e.g., Google TPU [34], Amazon Inferentia [70]). How-

ever these accelerators might not be effective in improving

performance without proper software optimizations across

the full systems stack [84]. As a result, systems researchers

have proposed many optimizations, targeting different bot-

tlenecks across the system stack – for example, improving

memory utilization [29, 67], better overlapping of communi-

cation with computation [25,30,83], and increasing communi-

cation efficiency [16]. Moreover, researchers have also devel-

oped workload-centric optimizations to exploit the stochastic

nature of DNN computation. For example, precision reduc-

tion [18, 23, 42] aims to reduce runtime as well as memory

consumption, and gradient compression [40, 41] aims at re-

ducing the communication overhead in distributed training.

Despite these advances, the benefits of many proposed op-

timizations cannot be fully exploited due to two main reasons.

First, the efficacy of many proposed performance optimiza-

tions can drastically change when applied to different ML

models and deployment configurations. The hardware deploy-

ments that practitioners use might be completely different

from the hardware configurations used by optimization and

model inventors. Differences in DNN models, accelerator

type, compute capabilities, available memory, networking ca-

pabilities, and software library versions can all shift the major

runtime bottlenecks. Second, it is onerous for programmers

to implement and evaluate various optimizations to identify

the ones that actually work for their models. As a result, it is

common for users to ask what-if questions such as:

Why did my DNN training workload run slowly? Will opti-

mization X improve the performance of my model? Does GPU

memory capacity limit the performance of my model? Would

upgrading to a faster network improve training throughput?

How will my workload scale with the number of GPUs?

The central focus of this paper is to answer the following

general question for DNN training workloads: Given a model

and a deployment scenario, how can we efficiently explore

the efficacy of potential solutions? Systems researchers have

tried to explore the impact of different potential performance

bottlenecks (e.g., CPU, network, IO) in many non-ML con-

texts [5,17,43,59,60,74]. The basic approaches to explore the

what-if questions are similar: decompose the workloads into

atomic tasks, profile runtime statistics for each task, model the

what-if question, and use simulation to estimate performance.
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These systems typically address what-if questions of the form:

"How does runtime change if a task T is N times (or even

infinitely) faster?" [17, 60]. Such questions can be simply

modeled by shrinking task runtime. While this basic approach

seems sufficient to address the central question above for

ML workloads, the diversity of DNN optimizations intro-

duces three key requirements unique to these workloads, thus

motivating the need for a novel solution.

First, we need to track dependencies at a kernel-level

abstraction i.e., one GPU kernel corresponds to one task (the

smallest unit of execution in the dependency graph). Such

fine-grained abstraction is necessary because optimizations

that improve hardware utilization typically target individual

compute kernels (e.g., mixed precision [42]). Meanwhile, ac-

curate performance estimation has to consider both CPU and

GPU runtime. Certain optimizations, e.g., kernel fusion, re-

quire potentially removing existing CPU and GPU tasks from

the dependency graph. Existing tools do not provide such

dependency tracking. It is therefore important to track kernel-

level dependencies among concurrently executing tasks.

Second, we need to map tasks to DNN layers. In con-

trast to prior works that explore what-if questions in non-

ML contexts, predicting the performance of DNN optimiza-

tions requires domain knowledge about DNNs to properly

model them. For example, MetaFlow [33] and TASO [32]

fuse DNN layers. Modeling them requires a mapping from

tasks to specific DNN layers. However, collecting kernel-level

traces on accelerators requires generic vendor-provided tools

(e.g., NVProf [48], CUPTI [49]), which have no application

specific knowledge. We therefore need to have the ability to

map low-level tasks to DNN layers.

Third, we need the ability to easily model diverse DNN

optimizations. Modeling a DNN optimization might involve

not just scaling or shrinking task durations, but also compli-

cated transformations to the dependency graph. For exam-

ple, TicTac [25] reschedules communication tasks, BlueCon-

nect [16] replaces the communication primitives to utilize

parallel network channels, and the optimization proposed by

Jung et al. [35] restructures the GPU kernel implementations.

Manually manipulating the kernel-level dependency graph

could be extremely intricate and error-prone. The system

should enable users to flexibly and effectively model such

diverse optimizations with minimal effort.

We introduce Daydream, a new system that fulfills all three

requirements described above, and achieves our goal of an-

swering potential what-if questions for DNN workloads. Con-

structing dependencies among potentially thousands of low-

level tasks is not an easy problem: tasks can be spread across

multiple execution threads (including both CPU threads and

GPU streams), thus even for simple DNN workloads, this re-

sults in thousands of tasks to be tracked. The intricacy comes

from identifying dependencies across threads. We make a key

observation about DNN training workloads: despite the large

number of tasks that need to be tracked, the number of concur-

rently executing threads is surprisingly quite limited. Based

on this observation, Daydream constructs the low-level depen-

dency graph, which provides a realistic model of overlapping

among CPU, GPU, and communication runtimes in a DNN

training workload. It uses a synchronization-free approach

to map GPU tasks onto appropriate higher-level DNN layer

abstractions. We also introduce a set of graph-transformation

rules, allowing programmers to effectively model various per-

formance optimizations. After modeling the optimization,

Daydream simulates the execution based on the new depen-

dency graph to predict the overall runtime. In our evaluation,

we show that Daydream is able to distinguish effective DNN

optimizations from those that will bring limited improvements

by accurately predicting their performance speedups.

In summary, we make the following key contributions:

• We make the observation that fine-grained tasks in DNN

training workloads are highly sequential. This greatly

simplifies dependency graph construction, over thou-

sands of tasks, as we only need to identify a limited

number of inter-thread dependencies.

• Daydream introduces the abstraction of a kernel-

granularity dependency graph that contains mappings

back to DNN specific abstractions (layers), by collect-

ing profiling data, instrumenting DNN frameworks, and

exploiting information from vendor-provided tools like

CUPTI. Daydream also provides primitives to mutate

the dependency graph in the form of simple graph trans-

formations. Taken together this enables programmers

to both (i) model a diverse set of popular optimizations

spanning kernel- and layer-level enhancements by using

simple graph-transformation primitives, and (ii) estimate

the efficacy of optimizations by simulating execution

time based on optimization-induced graph mutations.

• We extensively evaluate Daydream, with five different

optimizations on five DNN models across three distinct

applications. We show that Daydream can effectively de-

tect which optimizations provide improvements and also

accurately predict their magnitude for different DNN

models and deployments. For example, we estimate that

using mixed precision will improve the iteration time

of training BERTLARGE model by 17.2% (with <3% er-

ror), while the kernel fusion technique can improve it by

38.7% (with <7% error). We can also accurately predict

performance in distributed training with different num-

ber of workers and variable network bandwidth, based

on runtime profiles collected from a single-GPU setting.

2 DNN Training Optimizations and Tools

DNN training is an iterative algorithm, in which one itera-

tion consists of three phases: (i) forward, (ii) backward, and

(iii) weight update. The forward phase takes training data sam-

ples as input and produces output based on current weights
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Optimization Goal Strategy Technique Examples

Improving Hardware Utilization

in Single-Worker Setting

Increasing Mini-batch Size by

Reducing Memory Footprints
vDNN [67], Gist [29], Chen et al. [14]

Reducing Precision Micikevicius et al. [42], Gupta et al. [23], Das et al. [18]

Fusing Kernels/Layers FusedAdam [52], MetaFlow [33], Ashari et al. [10], TASO [32]

Improving Low-level Kernel

Implementation

Restructing Batchnorm [35], Tensor Comprehensions [72],

Kjolstad et al. [37], TVM [13]

Lowering Communication Overhead

in Distributed Training

Reducing Communication

Workloads

Deep Gradient Compression [40], AdaComm [76], Parallax [36],

TernGrad [78], QSGD [8]

Improving Communication

Efficiency/Overlap

Wait-free Backprop [83], P3 [30], BlueConnect [16], TicTac [25],

BytePS [62], Xue et al. [80]

Table 1: Representative optimizations for DNN training. We show how we can accurately estimate the performance of optimiza-

tions (shown in italics) in Section 6, and can effectively model many other optimizations (shown in bold) in Section 5.

(or parameters). The error between the forward output and

the input data labels is fed to the backward phase, which com-

putes the gradients of weights with respect to the input data.

The weight update phase then uses the gradients to update

weights accordingly. In each iteration, the input data samples

are randomly selected [11], forming a mini-batch of input.

2.1 DNN Training Optimizations

Modern DNNs have millions of parameters [24], resulting

in training times of days or even weeks [38]. To improve

DNN training performance, researchers have proposed var-

ious strategies focusing on different optimization goals. To

understand the potential what-if questions and how to design

a system to answer them, we study a list of software-level

techniques that speedup DNN training from top systems and

ML conferences in recent years. Table 1 shows our summary.

Exploiting computation power of hardware accelera-

tors. ML programmers often use large mini-batches, within

the memory budget, for better hardware utilization and faster

convergence. This motivates strategies that reduce the mem-

ory footprint of DNN training and hence enables training

with larger mini-batch sizes [14, 29, 67]. Researchers have

also proposed some generic strategies to increase hardware

utilization, including precision reduction [18, 23, 42], ker-

nel/layer fusion [10, 32, 33], and improving low-level kernel

implementation [13, 35, 37, 72]. Meanwhile, libraries such

as cuDNN [15], cuBLAS [45], MKL [75], Eigen [1], and

NCCL [46] are also constantly evolving to provide operations

and primitives that can better utilize underlying hardware.

Scalable distributed training. Data parallelism [11] is a

simple and effective strategy to improve training performance.

Using multiple accelerators significantly reduces DNN train-

ing time to hours or even minutes [44]. This success is mainly

based on the techniques that guarantee model convergence

under extremely large mini-batch size [7, 22, 81]. One of

the major performance bottlenecks for distributed training is

communication, which can be optimized by compressing traf-

fic [40, 41, 76, 78], increasing network utilization [16, 80], or

increasing the overlap between communication and computa-

tion [25,30,83]. Exploring the efficacy of these optimizations

without prediction requires a multi-machine cluster. Our pro-

posed design, Daydream, avoids the potential cost of cluster

setup (i.e. extra machines, accelerators, high-speed communi-

cation), by predicting distributed training performance with

profiles collected from a single-worker environment.

2.2 Profiling Tools for DNNs

As the full ML system stack is constantly evolving, profiling

tools play a key role in helping programmers identify the per-

formance bottlenecks under different system configurations.

Hardware profiling tools. Modern DNN training heav-

ily relies on hardware accelerators such as GPUs [56] and

TPUs [34]. To help programmers develop highly efficient

applications, hardware vendors provide profiling tools that

can expose hardware performance counters. For example,

NVProf [48] provides programmers with information includ-

ing start/end time, core utilization, memory throughput, cache

miss rate, along with hundreds of other hardware counters

for every GPU kernel. CUPTI [49] enables programmers to

extract and manipulate these counters at runtime. Nsight [47]

aims to provide details on the state of more fine-grained coun-

ters for recent GPU architectures [56]. Our proposed system,

Daydream, relies on CUPTI to collect low-level traces for

further analysis.

Framework built-in tools. For more intuitive profiling

results, it is often desirable for a profiler to show runtime

statistics for framework operations, or even DNN layers.

DNN frameworks have built-in tools to achieve this goal

by correlating the hardware counters with runtime informa-

tion collected in frameworks. TensorFlow [3], coupled with

the Cloud TPU Tool [21], can provide an execution timeline

and runtime statistics for each TensorFlow operation. Simi-

larly, other mainstream frameworks (e.g., MXNet [12] and

PyTorch [61]) provide built-in tools that can extract per-layer

or per-operation runtime from both the CPU and the GPU.

The framework built-in tools render intuitive results for pro-
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these primitives. These primitives include (i) task inser-

tion/removal, (ii) task selection and update, and (iii) changing

the policy for scheduling tasks. The proposed primitives are

simple yet powerful enough to represent many different opti-

mizations as we will show in Section 5. They play a key role

in realizing our goal of efficiently exploring what-if questions.

In summary, Daydream introduces the abstraction of a

kernel-granularity dependency graph that contains mappings

back to DNN specific abstractions (layers). It tracks depen-

dencies by collecting profiling data as well as instrument-

ing DNN frameworks. Daydream also provides primitives

to mutate the dependency graph in the form of simple graph

transformations. Altogether this enables programmers to both

(i) model a diverse set of popular optimizations spanning

kernel- and layer-level enhancements by using simple graph-

transformation primitives, and (ii) estimate the efficacy of opti-

mizations by simulating execution time based on optimization-

induced graph mutations.

4 Design

We describe Daydream’s design with an emphasis on how to

construct Daydream’s proposed graph abstraction: the kernel-

granularity dependency graph with mappings back to DNN

layers. We also describe the primitives for mutating this graph

to model different optimizations and how Daydream uses the

graph to estimate the efficacy of various DNN optimizations.

4.1 Overview of Daydream

Figure 2 shows the workflow of performance prediction in

Daydream. It consists of the following four phases:

Phase 1: Trace collection. Constructing a kernel-level de-

pendency graph requires low-level details for all tasks. These

details are extremely massive, differ across ML frameworks,

and can be obtained by profiling a baseline workload. Day-

dream collects low-level profiling data using CUPTI [49], a

tool which provides details for all CPU/GPU tasks includ-

ing name, start time, duration, CUDA stream ID, thread ID,

etc. We manually augment three popular frameworks (Caffe,

MXNet, PyTorch) for use with CUPTI and modify the layer

modules of these frameworks to collect timestamps of each

layer, which will be used for task-to-layer mapping, described

in Section 4.3. Through our instrumentation, we also collect

the necessary information (e.g., size of gradients) to construct

the dependency graph of distributed training via a profile

collected in a single worker setting.

Phase 2: Dependency graph construction. Daydream

constructs the dependency graph with details of tasks pro-

vided by the first phase. A dependency could be induced by

domain knowledge (e.g., a GPU task triggers a communica-

tion task), or by hardware/software implementation (e.g., a

cudaLaunchKernel API triggers the corresponding GPU task).

Based on our analysis, we identify five different types of de-

pendencies (described in Section 4.2.2), which are sufficient

for Daydream to accurately simulate baseline execution.

Phase 3: Graph transformation. To estimate the efficacy

of a given optimization, Daydream models the optimization by

transforming the dependency graph. Daydream provides a set

of primitives (e.g. selection, insertion/removal) to represent

these transformations. We design these primitives in a way

such that they are succinct (easy to use), flexible (able to

depict a wide range of optimizations), and accurate (being

able to achieve high prediction accuracy).

Algorithm 1: Daydream’s Simulation Algorithm

Input :Dependency graph: G(V,E)
Output :The start time of each task u ∈V

1 F ← /0 // initialize the frontier task set

2 P←{0} // initialize thread progress

3 foreach task u ∈V do

4 u.re f ← |{u′sparents}|
5 if u.ref = 0 then

6 F ← F ∪{u}

7 end

8 while F 6= /0 do

9 u← schedule(F) // pick a task to exec.

10 t← u.ExecutionT hread

11 F ← F−{u}
12 u.start← max(P[t],u.start)
13 P[t]← u.start +u.duration+u.gap

14 foreach c ∈ u.children do

15 c.re f ← c.re f −1

16 c.start←
max(c.start,u.start +u.duration+u.gap)

17 if c.re f = 0 then

18 F ← F ∪{c}
19 end

20 end

21 end

Phase 4: Runtime simulation. Daydream simulates the

execution of optimizations to predict runtime based on the

dependency graph. Algorithm 1 shows the simulation process,

which traverses the dependency graph and puts tasks into

execution threads. In each iteration, Daydream picks one

task from the execution frontier (i.e. tasks that are ready to

execute), dispatches it to its corresponding execution thread,

and updates the thread progress. The simulation determines

the start time of each task and records the total execution time.

4.2 Dependency Graph Construction

Constructing the dependency graph is essential to determine

the node (task) set and edge (dependency) set.

4.2.1 Task

Daydream’s kernel-level dependency graph contains the fol-

lowing four types of tasks:

GPU tasks. Each GPU task in the graph corresponds to one

GPU kernel. Daydream also views CUDA memory copies as
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improve memory-bounded GPU kernels by 2× because the

number of transferred bits is halved. With Tensor Cores in the

Volta and Turing architectures, AMP empirically yields up to

3× speedup on the most compute-intensive workloads [58].

To predict AMP performance, we simply select all the

compute-intensive (e.g., sgemm, conv) kernels and memory-

bounded (e.g., elementwise, batchnorm, RELU) kernels, and

shrink their duration by 3× and 2× respectively. We show

the pseudo code for modeling AMP in Algorithm 3.

Algorithm 2: What_If_AMP

Input :Dependency graph: G(V,E)
Output :A modified graph G(V,E) to model AMP

1 GPUTasks←{G.Select( f uncPtr(IsOnGPU))}
2 foreach u ∈ GPUTasks do

3 if ”sgemm” in u.Name or ”scudnn” in u.Name then

4 u.duration← u.duration/3

5 else

6 u.duration← u.duration/2

7 end

8 end

FusedAdam Optimizer. We use the FusedAdam opti-

mizer [52] implemented in NVidia’s Apex package [51] as

an example for the kernel fusion optimization. This optimizer

fuses all kernels in one weight update phase into one uni-

fied kernel. It is applicable to the models that use the Adam

optimizer (e.g., GNMT, BERT). Daydream uses the kernel-to-

layer mapping to identify the CPU/GPU tasks that belong to a

weight update phase. We remove all these tasks, then insert

a new GPU task whose duration is roughly estimated by the

sum of all removed compute-intensive kernels.

Reconstructing Batchnorm. Recently Jung et al. [35] pro-

posed a technique that optimizes non-convolutional layers in

state-of-the-art CNNs. It first splits each batch normalization

layer into two sub-layers, then fuses the first sub-layer with

the previous convolutional layer, and the second sub-layer

with the following activation and convolutional layers. We

remove the affected activation kernels when estimating per-

formance, since they are memory-bound kernels now fused

with compute-intensive convolutional kernels. For the batch

nomalization layers, we estimate that the GPU kernels will

be improved by 2× since this optimization halves the amount

of input data that these layers load from GPU memory.

Distributed Training. Using Daydream we can accurately

predict distributed training performance with the profile based

on the single-GPU environment. We evaluate Daydream’s

prediction based on PyTorch, which uses collective communi-

cation primitives from the NCCl library [46]. PyTorch groups

gradients from multiple layers into buckets before transfer-

ring them. Hence, to predict distributed training performance,

we need to insert one allReduce task for every bucket. The

dependencies of the inserted tasks are determined based on

the layer-to-bucket mapping (which requires additional instru-

mentation to the PyTorch framework).

Priority-Based Parameter Propagation (P3). P3 [30] is

a technique that optimizes communication overhead by slic-

ing and prioritizing. We evaluate Daydream’s prediction of

P3 based on MXNet, which uses the parameter-server mech-

anism [39]. In order to model parameter slicing, we insert

multiple push task and pull tasks between the backward and

the forward GPU tasks for each layer. The duration of the

push/pull task is calculated from the slice size and the network

bandwidth. To model the priority scheduling, we override the

schedule function with a priority queue.

5.2 Modeling Additional Optimizations

In addition to the above optimizations, we show that Day-

dream is capable of modeling an additional set of diverse

DNN optimizations.

BlueConnect. BlueConnect [16] optimizes communica-

tion by decomposing the allReduce primitives into a series

of reduce-scatter and all-gather primitives. These primitives

run concurrently as they use parallel communication chan-

nels. To predict the performance of BlueConnect, instead of

inserting regular allReduce or push/pull tasks, we need to

insert reduce-scatter and all-gather tasks, and assign them

to corresponding network channels (the duration can be esti-

mated according to formulas shown in [57]).

MetaFlow. MetaFlow [33] is a layer-fusion technique to

optimize DNN training by fusing DNN layers to simplify the

DNN topology. We select the GPU kernels of substituted

layers, remove them, and insert GPU kernels of new layers

to predict the performance of MetaFlow in Daydream. The

new layers are mostly existing layers with different dimen-

sions; their GPU kernel durations can be inferred by profiling.

vDNN. Virtualized DNN [67] reduces GPU memory con-

sumption by temporarily offloading intermediate data from

GPU memory to CPU memory. The offloaded data needs

to be prefetched back to GPU to perform execution, which

causes potential performance overhead due to PCIe traffic or

late prefetching. To predict the performance overhead using

Daydream, we only need to insert additional CUDA mem-

ory copies, and override the schedule function to implement

a custom prefetching policy.

Gist. Gist [29] reduces GPU memory consumption by stor-

ing encoded intermediate data and decoding before the data

is used. The encoding and decoding introduces performance

overhead. We insert extra encoding and decoding GPU

kernels (along with cudaLaunchKernel calls in CPU) to es-

timate the performance overhead in Daydream. The duration

of the inserted encoding/decoding kernels can be estimated

using existing element-wise kernels.

Deep Gradient Compression (DGC). DGC [40] is a tech-

nique that reduces communication overhead by compressing

the gradients. To estimate performance, we: (i) scale the

duration of communication; (ii) insert the GPU tasks of

compression and decompression. The duration of inserted

344    2020 USENIX Annual Technical Conference USENIX Association



USENIX Association 2020 USENIX Annual Technical Conference    345



346    2020 USENIX Annual Technical Conference USENIX Association



USENIX Association 2020 USENIX Annual Technical Conference    347



prediction error depends on the training workload itself. Due

to this limitation, it is hard for Daydream to accurately model

algorithmic innovations (e.g., BPPSA [77] or 2nd Order Op-

timizations [68]), because these innovations use new GPU

kernels at a massive scale, making the performance estimation

with Daydream less accurate. Estimating new GPU kernels

runtime is beyond the current scope of Daydream.

While Daydream cannot predict individual kernel runtime,

it provides a high-level structure for kernel developers to

estimate the overall performance. Developers can profile their

individual kernels, and then input the profiling results into

Daydream to accurately estimate the overall runtime. This

approach saves the engineering effort of porting the kernel

implementation into the DNN frameworks.

Concurrent Kernels Existing GPU profilers such as

CUPTI usually serialize GPU kernel execution, removing

all concurrency, making our performance estimation some-

what conservative. Despite this, we observe that the runtime

for models with concurrent execution (e.g., GNMT) can still

be predicted with high accuracy (§ 6.2). This is because the

majority of computation time goes to fully connected lay-

ers (including embedding layers), which have no concurrent

kernels executed in parallel with them. We leave a complete

solution for concurrent kernels, requiring better support from

profiling tools, as a part of future work.

8 Related Work

To help programmers understand the performance of the hard-

ware accelerators and develop highly efficient applications,

hardware vendors provide profiling tools (e.g., NVProf [48],

Nsight [47], and vTune [66]) that can reveal low-level perfor-

mance counters (e.g., cache hit rate, memory speed or clock

rate). These tools are usually designed with general applica-

tions in mind, and expose hundreds of low-level performance

counters. The fundamental limitation of all these tools is that

they do not utilize application-specific knowledge.

The new generation of profiling tools feature the

application-aware property, enabling them to deliver domain-

specific (e.g., ML-specific) insights about performance to

programmers. The Cloud TPU Tool [21] is an example of

such a profiling tool. It correlates low-level TPU metrics with

the DNN structure, and shows the performance for each DNN

layer. Similarly, MXNet [12] and PyTorch [61] also have

their own built-in profiling tools. These domain-specific tools

can highlight performance hotspots, but are less efficient in

finding optimization opportunities. In contrast, Daydream is

not only application-aware, but also optimization-aware, en-

abling Daydream to quantitatively estimate the efficacy of

different optimizations without fully implementing them.

Prior works have tried to explore what-if questions in other

contexts by using low-level traces. Curtsinger et al. proposed a

causal profiler (COZ [17]) to identify potentially unknown op-

timization opportunities by running performance simulation

with certain functions being virtually speed-up. Unlike Day-

dream, COZ does not require dependencies among functions

because it does not consider the cases where functions can be

added or deleted (which is the case for many ML optimiza-

tions). Pourghassemi et al. uses the idea of COZ to analyze

the performance for web browser applications [63]. For data

analytic frameworks, such as Spark [82], Ousterhout et al. use

dependency analysis to understand the overhead caused by

I/O, network, and stragglers [59,60]. Daydream is designed to

address a more diversified set of what-if questions, and hence

requires more powerful modeling.

Prior works address what-if questions of the form "What

if we can speedup task T by N times (or infinity)?", but they

do not study whether existing optimizations can deliver this

speedup. In the ML context, given an optimization, accurately

predicting the performance of individual tasks in the depen-

dency graph, is still an open problem. It requires additional

knowledge about the kernel implementation and the archi-

tecture design. Currently Daydream can not automatically

estimate the runtime of new GPU kernels. However, as we

show in Section 6, even with rough estimates of per-kernel

duration based on domain knowledge and reasonable assump-

tions, we can still achieve high overall prediction accuracy.

9 Conclusion

The efficacy of DNN optimizations can vary largely across

different DNN models and deployments. Daydream is a new

profiler to effectively explore the efficacy of a diverse set of

DNN optimizations. Daydream achieves this goal by using

three key ideas: (i) constructing a kernel-level dependency

graph by utilizing vendor-provided profiling tools, while track-

ing dependencies among concurrently executing tasks; (ii)

mapping low-level traces to DNN layers in a synchronization-

free manner; (iii) introducing a set of rules for programmers

to effectively describe and model different optimizations. Our

evaluation shows that using Daydream, we can effectively

model (i.e. predict runtime) the most common DNN optimiza-

tions, and accurately identify both optimizations that result in

significant performance improvements as well as those that

provide limited benefits or even slowdowns.
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