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ABSTRACT

This paper presents a new cluster architecture for low-power data-
intensive computing. FAWN couples low-power embedded CPUs to
small amounts of local flash storage, and balances computation and
I/O capabilities to enable efficient, massively parallel access to data.

The key contributions of this paper are the principles of the FAWN
architecture and the design and implementation of FAWN-KV—a
consistent, replicated, highly available, and high-performance key-
value storage system built on a FAWN prototype. Our design centers
around purely log-structured datastores that provide the basis for
high performance on flash storage, as well as for replication and
consistency obtained using chain replication on a consistent hashing
ring. Our evaluation demonstrates that FAWN clusters can handle
roughly 350 key-value queries per Joule of energy—two orders of
magnitude more than a disk-based system.

Categories and Subject Descriptors: D.4.7 [Operating Sys-
tems]: Organization and Design–Distributed Systems; D.4.2 [Op-
erating Systems]: Storage Management; D.4.5 [Operating Sys-
tems]: Reliability–Fault-tolerance; D.4.8 [Operating Systems]:
Performance–Measurements

General Terms: Design, Measurement, Performance, Reliability

Keywords: Design, Energy Efficiency, Performance, Measurement,
Cluster Computing, Flash

1. INTRODUCTION

Large-scale data-intensive applications, such as high-performance
key-value storage systems, are growing in both size and impor-
tance; they now are critical parts of major Internet services such as
Amazon (Dynamo [10]), LinkedIn (Voldemort [41]), and Facebook
(memcached [33]).

The workloads these systems support share several characteristics:
they are I/O, not computation, intensive, requiring random access
over large datasets; they are massively parallel, with thousands of
concurrent, mostly-independent operations; their high load requires
large clusters to support them; and the size of objects stored is
typically small, e.g., 1 KB values for thumbnail images, 100s of
bytes for wall posts, twitter messages, etc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
SOSP’09, October 11-14, 2009, Big Sky, MT, USA.
Copyright 2009 ACM 978-1-60558-752-3/09/10 ...$10.00

The clusters that serve these workloads must provide both high
performance and low cost operation. Unfortunately, small-object
random-access workloads are particularly ill-served by conventional
disk-based or memory-based clusters. The poor seek performance
of disks makes disk-based systems inefficient in terms of both sys-
tem performance and performance per watt. High performance
DRAM-based clusters, storing terabytes or petabytes of data, are
both expensive and consume a surprising amount of power—two
2 GB DIMMs consume as much energy as a 1 TB disk.

The power draw of these clusters is becoming an increasing frac-
tion of their cost—up to 50% of the three-year total cost of owning
a computer. The density of the datacenters that house them is in turn
limited by their ability to supply and cool 10–20 kW of power per
rack and up to 10–20 MW per datacenter [25]. Future datacenters
may require as much as 200 MW [25], and datacenters are being
constructed today with dedicated electrical substations to feed them.

These challenges necessitate the question: Can we build a cost-
effective cluster for data-intensive workloads that uses less than a
tenth of the power required by a conventional architecture, but that
still meets the same capacity, availability, throughput, and latency
requirements?

In this paper, we present the FAWN architecture—a Fast Array
of Wimpy Nodes—that is designed to address this question. FAWN
couples low-power, efficient embedded CPUs with flash storage to
provide efficient, fast, and cost-effective access to large, random-
access data. Flash is significantly faster than disk, much cheaper
than the equivalent amount of DRAM, and consumes less power
than either. Thus, it is a particularly suitable choice for FAWN and
its workloads. FAWN creates a well-matched system architecture
around flash: each node can use the full capacity of the flash without
memory or bus bottlenecks, but does not waste excess power.

To show that it is practical to use these constrained nodes as the
core of a large system, we have designed and built the FAWN-KV
cluster-based key-value store, which provides storage functionality
similar to that used in several large enterprises [10, 41, 33]. FAWN-
KV is designed specifically with the FAWN hardware in mind, and
is able to exploit the advantages and avoid the limitations of wimpy
nodes with flash memory for storage.

The key design choice in FAWN-KV is the use of a log-structured
per-node datastore called FAWN-DS that provides high performance
reads and writes using flash memory. This append-only data log
provides the basis for replication and strong consistency using chain
replication [54] between nodes. Data is distributed across nodes us-
ing consistent hashing, with data split into contiguous ranges on disk
such that all replication and node insertion operations involve only a
fully in-order traversal of the subset of data that must be copied to a
new node. Together with the log structure, these properties combine
to provide fast failover and fast node insertion, and they minimize
the time the affected datastore’s key range is locked during such



operations—for a single node failure and recovery, the affected key
range is blocked for at most 100 milliseconds.

We have built a prototype 21-node FAWN cluster using 500 MHz
embedded CPUs. Each node can serve up to 1300 256-byte queries
per second, exploiting nearly all of the raw I/O capability of their
attached flash devices, and consumes under 5 W when network
and support hardware is taken into account. The FAWN cluster
achieves 364 queries per Joule—two orders of magnitude better than
traditional disk-based clusters.

In Section 5, we compare a FAWN-based approach to other ar-
chitectures, finding that the FAWN approach provides significantly
lower total cost and power for a significant set of large, high-query-
rate applications.

2. WHY FAWN?

The FAWN approach to building well-matched cluster systems has
the potential to achieve high performance and be fundamentally
more energy-efficient than conventional architectures for serving
massive-scale I/O and data-intensive workloads. We measure system
performance in queries per second and measure energy-efficiency in
queries per Joule (equivalently, queries per second per Watt). FAWN
is inspired by several fundamental trends:

Increasing CPU-I/O Gap: Over the last several decades, the gap
between CPU performance and I/O bandwidth has continually grown.
For data-intensive computing workloads, storage, network, and mem-
ory bandwidth bottlenecks often cause low CPU utilization.

FAWN Approach: To efficiently run I/O-bound data-intensive,
computationally simple applications, FAWN uses wimpy processors
selected to reduce I/O-induced idle cycles while maintaining high
performance. The reduced processor speed then benefits from a
second trend:

CPU power consumption grows super-linearly with speed. Op-
erating processors at higher frequency requires more energy, and
techniques to mask the CPU-memory bottleneck come at the cost of
energy efficiency. Branch prediction, speculative execution, out-of-
order/superscalar execution and increasing the amount of on-chip
caching all require additional processor die area; modern proces-
sors dedicate as much as half their die to L2/3 caches [21]. These
techniques do not increase the speed of basic computations, but
do increase power consumption, making faster CPUs less energy
efficient.

FAWN Approach: A FAWN cluster’s slower CPUs dedicate more
transistors to basic operations. These CPUs execute significantly
more instructions per Joule than their faster counterparts: multi-
GHz superscalar quad-core processors can execute approximately
100 million instructions per Joule, assuming all cores are active
and avoid stalls or mispredictions. Lower-frequency in-order CPUs,
in contrast, can provide over 1 billion instructions per Joule—an
order of magnitude more efficient while still running at 1/3rd the
frequency.

Worse yet, running fast processors below their full capacity draws
a disproportionate amount of power:

Dynamic power scaling on traditional systems is surprisingly
inefficient. A primary energy-saving benefit of dynamic voltage
and frequency scaling (DVFS) was its ability to reduce voltage as
it reduced frequency [56], but modern CPUs already operate near
minimum voltage at the highest frequencies.

Even if processor energy was completely proportional to load,
non-CPU components such as memory, motherboards, and power
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Figure 1: FAWN-KV Architecture.

supplies have begun to dominate energy consumption [3], requiring
that all components be scaled back with demand. As a result, run-
ning a modern, DVFS-enabled system at 20% of its capacity may
still consume over 50% of its peak power [52]. Despite improved
power scaling technology, systems remain most energy-efficient
when operating at peak utilization.

A promising path to energy proportionality is turning machines
off entirely [7]. Unfortunately, these techniques do not apply well
to FAWN-KV’s target workloads: key-value systems must often
meet service-level agreements for query response throughput and
latency of hundreds of milliseconds; the inter-arrival time and latency
bounds of the requests prevents shutting machines down (and taking
many seconds to wake them up again) during low load [3].

Finally, energy proportionality alone is not a panacea: systems
ideally should be both proportional and efficient at 100% load. In
this paper, we show that there is significant room to improve energy
efficiency, and the FAWN approach provides a simple way to do so.

3. DESIGN AND IMPLEMENTATION

We describe the design and implementation of the system compo-
nents from the bottom up: a brief overview of flash storage (Sec-
tion 3.2), the per-node FAWN-DS datastore (Section 3.3), and the
FAWN-KV cluster key-value lookup system (Section 3.4), including
caching, replication, and consistency.

3.1 Design Overview
Figure 1 gives an overview of the entire FAWN system. Client
requests enter the system at one of several front-ends. The front-
end nodes forward the request to the back-end FAWN-KV node
responsible for serving that particular key. The back-end node serves
the request from its FAWN-DS datastore and returns the result to
the front-end (which in turn replies to the client). Writes proceed
similarly.

The large number of back-end FAWN-KV storage nodes are or-
ganized into a ring using consistent hashing. As in systems such
as Chord [48], keys are mapped to the node that follows the key in
the ring (its successor). To balance load and reduce failover times,
each physical node joins the ring as a small number (V ) of virtual
nodes, each virtual node representing a virtual ID (“VID ”) in the
ring space. Each physical node is thus responsible for V different
(non-contiguous) key ranges. The data associated with each virtual
ID is stored on flash using FAWN-DS.
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3.2 Understanding Flash Storage
Flash provides a non-volatile memory store with several signifi-
cant benefits over typical magnetic hard disks for random-access,
read-intensive workloads—but it also introduces several challenges.
Three characteristics of flash underlie the design of the FAWN-KV
system described throughout this section:

1. Fast random reads: (� 1 ms), up to 175 times faster than
random reads on magnetic disk [35, 40].

2. Efficient I/O: Flash devices consume less than one Watt even
under heavy load, whereas mechanical disks can consume over
10 W at load. Flash is over two orders of magnitude more
efficient than mechanical disks in terms of queries/Joule.

3. Slow random writes: Small writes on flash are very expen-
sive. Updating a single page requires first erasing an entire
erase block (128 KB–256 KB) of pages, and then writing the
modified block in its entirety. As a result, updating a single byte
of data is as expensive as writing an entire block of pages [37].

Modern devices improve random write performance using write
buffering and preemptive block erasure. These techniques improve
performance for short bursts of writes, but recent studies show that
sustained random writes still perform poorly on these devices [40].

These performance problems motivate log-structured techniques
for flash filesystems and data structures [36, 37, 23]. These same
considerations inform the design of FAWN’s node storage manage-
ment system, described next.

3.3 The FAWN Data Store
FAWN-DS is a log-structured key-value store. Each store contains

values for the key range associated with one virtual ID. It acts to
clients like a disk-based hash table that supports Store, Lookup,
and Delete.1

FAWN-DS is designed specifically to perform well on flash stor-
age and to operate within the constrained DRAM available on wimpy
nodes: all writes to the datastore are sequential, and reads require a
single random access. To provide this property, FAWN-DS maintains
an in-DRAM hash table (Hash Index) that maps keys to an offset in
the append-only Data Log on flash (Figure 2a). This log-structured
design is similar to several append-only filesystems [42, 15], which
avoid random seeks on magnetic disks for writes.

1We differentiate datastore from database to emphasize that we do not provide a
transactional or relational interface.

/* KEY = 0x93df7317294b99e3e049, 16 index bits */
INDEX = KEY & 0xffff; /* = 0xe049; */
KEYFRAG = (KEY >> 16) & 0x7fff; /* = 0x19e3; */
for i = 0 to NUM HASHES do

bucket = hash[i](INDEX);
if bucket.valid && bucket.keyfrag==KEYFRAG &&

readKey(bucket.offset)==KEY then
return bucket;

end if
{Check next chain element...}

end for
return NOT FOUND;

Figure 3: Pseudocode for hash bucket lookup in FAWN-DS.

Mapping a Key to a Value. FAWN-DS uses an in-memory
(DRAM) Hash Index to map 160-bit keys to a value stored in the
Data Log. It stores only a fragment of the actual key in memory to
find a location in the log; it then reads the full key (and the value)
from the log and verifies that the key it read was, in fact, the correct
key. This design trades a small and configurable chance of requiring
two reads from flash (we set it to roughly 1 in 32,768 accesses) for
drastically reduced memory requirements (only six bytes of DRAM
per key-value pair).

Figure 3 shows the pseudocode that implements this design for
Lookup. FAWN-DS extracts two fields from the 160-bit key: the i
low order bits of the key (the index bits) and the next 15 low order
bits (the key fragment). FAWN-DS uses the index bits to select a
bucket from the Hash Index, which contains 2i hash buckets. Each
bucket is only six bytes: a 15-bit key fragment, a valid bit, and a
4-byte pointer to the location in the Data Log where the full entry is
stored.

Lookup proceeds, then, by locating a bucket using the index bits
and comparing the key against the key fragment. If the fragments
do not match, FAWN-DS uses hash chaining to continue searching
the hash table. Once it finds a matching key fragment, FAWN-DS
reads the record off of the flash. If the stored full key in the on-flash
record matches the desired lookup key, the operation is complete.
Otherwise, FAWN-DS resumes its hash chaining search of the in-
memory hash table and searches additional records. With the 15-bit
key fragment, only 1 in 32,768 retrievals from the flash will be
incorrect and require fetching an additional record.

The constants involved (15 bits of key fragment, 4 bytes of log
pointer) target the prototype FAWN nodes described in Section 4.



A typical object size is between 256 B to 1 KB, and the nodes
have 256 MB of DRAM and approximately 4 GB of flash storage.
Because each node is responsible for V key ranges (each of which
has its own datastore file), a single physical node can address 4 GB
* V bytes of data. Expanding the in-memory storage to 7 bytes per
entry would permit FAWN-DS to address 512 GB of data per key
range. While some additional optimizations are possible, such as
rounding the size of objects stored in flash or reducing the number of
bits used for the key fragment (and thus incurring, e.g., a 1-in-1000
chance of having to do two reads from flash), the current design
works well for the target key-value workloads we study.

Reconstruction. Using this design, the Data Log contains all the
information necessary to reconstruct the Hash Index from scratch.
As an optimization, FAWN-DS periodically checkpoints the index
by writing the Hash Index and a pointer to the last log entry to flash.
After a failure, FAWN-DS uses the checkpoint as a starting point to
reconstruct the in-memory Hash Index quickly.

Virtual IDs and Semi-random Writes. A physical node has a sep-
arate FAWN-DS datastore file for each of its virtual IDs, and FAWN-
DS appends new or updated data items to the appropriate datastore.
Sequentially appending to a small number of files is termed semi-
random writes. Prior work by Nath and Gibbons observed that with
many flash devices, these semi-random writes are nearly as fast as a
single sequential append [36]. We take advantage of this property to
retain fast write performance while allowing key ranges to be stored
in independent files to speed the maintenance operations described
below. We show in Section 4 that these semi-random writes perform
sufficiently well.

3.3.1 Basic functions: Store, Lookup, Delete

Store appends an entry to the log, updates the corresponding hash
table entry to point to this offset within the Data Log, and sets the
valid bit to true. If the key written already existed, the old value is
now orphaned (no hash entry points to it) for later garbage collection.
Lookup retrieves the hash entry containing the offset, indexes

into the Data Log, and returns the data blob.
Delete invalidates the hash entry corresponding to the key by

clearing the valid flag and writing a Delete entry to the end of the data
file. The delete entry is necessary for fault-tolerance—the invalidated
hash table entry is not immediately committed to non-volatile storage
to avoid random writes, so a failure following a delete requires a
log to ensure that recovery will delete the entry upon reconstruction.
Because of its log structure, FAWN-DS deletes are similar to store
operations with 0-byte values. Deletes do not immediately reclaim
space and require compaction to perform garbage collection. This
design defers the cost of a random write to a later sequential write
operation.

3.3.2 Maintenance: Split, Merge, Compact

Inserting a new virtual node into the ring causes one key range
to split into two, with the new virtual node gaining responsibility
for the first part of it. Nodes handling these VIDs must therefore
Split their datastore into two datastores, one for each key range.
When a virtual node departs the system, two adjacent key ranges
must similarly Merge into a single datastore. In addition, a virtual
node must periodically Compact its datastores to clean up stale or
orphaned entries created by Split, Store, and Delete.

The design of FAWN-DS ensures that these maintenance func-
tions work well on flash, requiring only scans of one datastore and
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Figure 4: FAWN-KV Interfaces—Front-ends manage back-
ends, route requests, and cache responses. Back-ends use
FAWN-DS to store key-value pairs.

sequential writes into another. We briefly discuss each operation in
turn.
Split parses the Data Log sequentially, writing each entry in a

new datastore if its key falls in the new datastore’s range. Merge
writes every log entry from one datastore into the other datastore;
because the key ranges are independent, it does so as an append.
Split and Merge propagate delete entries into the new datastore.
Compact cleans up entries in a datastore, similar to garbage

collection in a log-structured filesystem. It skips entries that fall
outside of the datastore’s key range, which may be left-over after a
split. It also skips orphaned entries that no in-memory hash table
entry points to, and then skips any delete entries corresponding to
those entries. It writes all other valid entries into the output datastore.

3.3.3 Concurrent Maintenance and Operation

All FAWN-DS maintenance functions allow concurrent read and
write access to the datastore. Stores and Deletes only modify
hash table entries and write to the end of the log.

The maintenance operations (Split, Merge, and Compact)
sequentially parse the Data Log, which may be growing due to
deletes and stores. Because the log is append-only, a log entry once
parsed will never be changed. These operations each create one
new output datastore logfile. The maintenance operations therefore
run until they reach the end of the log, and then briefly lock the
datastore, ensure that all values flushed to the old log have been
processed, update the FAWN-DS datastore list to point to the newly
created log, and release the lock (Figure 2c). The lock must be held
while writing in-flight appends to the log and updating datastore list
pointers, which typically takes 20–30 ms at the end of a Split or
Merge (Section 4.3).

3.4 The FAWN Key-Value System
Figure 4 depicts FAWN-KV request processing. Client applications
send requests to front-ends using a standard put/get interface. Front-
ends send the request to the back-end node that owns the key space
for the request. The back-end node satisfies the request using its
FAWN-DS and replies to the front-ends.

In a basic FAWN implementation, clients link against a front-end
library and send requests using a local API. Extending the front-end
protocol over the network is straightforward—for example, we have
developed a drop-in replacement for the memcached distributed
memory cache, enabling a collection of FAWN nodes to appear as a
single, robust memcached server.
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3.4.1 Consistent Hashing: Key Ranges to Nodes

A typical FAWN cluster will have several front-ends and many back-
ends. FAWN-KV organizes the back-end VIDs into a storage ring-
structure using consistent hashing, similar to the Chord DHT [48].
FAWN-KV does not use DHT routing—instead, front-ends maintain
the entire node membership list and directly forward queries to the
back-end node that contains a particular data item.

Each front-end node manages the VID membership list and
queries for a large contiguous chunk of the key space (in other
words, the circular key space is divided into pie-wedges, each owned
by a front-end). A front-end receiving queries for keys outside of its
range forwards the queries to the appropriate front-end node. This
design either requires clients to be roughly aware of the front-end
mapping, or doubles the traffic that front-ends must handle, but
it permits front ends to cache values without a cache consistency
protocol.

The key space is allocated to front-ends by a single management
node; we envision this node being replicated using a small Paxos
cluster [27], but we have not (yet) implemented this. There would
be 80 or more back-end nodes per front-end node with our current
hardware prototypes, so the amount of information this management
node maintains is small and changes infrequently—a list of 125
front-ends would suffice for a 10,000 node FAWN cluster.2

When a back-end node joins, it obtains the list of front-end IDs.
Each of its virtual nodes uses this list to determine which front-end
to contact to join the ring, one VID at a time. We chose this design
so that the system would be robust to front-end node failures: The
back-end node identifier (and thus, what keys it is responsible for) is
a deterministic function of the back-end node ID. If a front-end node
fails, data does not move between back-end nodes, though virtual
nodes may have to attach to a new front-end.

The FAWN-KV ring uses a 160-bit circular ID space for VIDs
and keys. Virtual IDs are hashed identifiers derived from the node’s
address. Each VID owns the items for which it is the item’s successor
in the ring space (the node immediately clockwise in the ring). As an
example, consider the cluster depicted in Figure 5 with five physical
nodes, each of which has two VIDs. The physical node A appears as
VIDs A1 and A2, each with its own 160-bit identifiers. VID A1 owns
key range R1, VID B1 owns range R2, and so on.

2We do not use consistent hashing to determine this mapping because the number of
front-end nodes may be too small to achieve good load balance.
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Consistent hashing provides incremental scalability without
global data movement: adding a new VID moves keys only at the
successor of the VID being added. We discuss below (Section 3.4.4)
how FAWN-KV uses the single-pass, sequential Split and Merge
operations in FAWN-DS to handle such changes efficiently.

3.4.2 Caching Prevents Wimpy Hot-Spots

FAWN-KV caches data using a two-level cache hierarchy. Back-end
nodes implicitly cache recently accessed data in their filesystem
buffer cache. While our current nodes (Section 4) can read at about
1300 queries per second from flash, they can locally retrieve 85,000
queries per second if the working set fits completely in buffer cache.
The FAWN front-end maintains a small, high-speed query cache that
helps reduce latency and ensures that if the load becomes skewed to
only one or a few keys, those keys are served by a fast cache instead
of all hitting a single back-end node.

3.4.3 Replication and Consistency

FAWN-KV offers a configurable replication factor for fault tolerance.
Items are stored at their successor in the ring space and at the R−1
following virtual IDs. FAWN-KV uses chain replication [54] to
provide strong consistency on a per-key basis. Updates are sent to
the head of the chain, passed along to each member of the chain via
a TCP connection between the nodes, and queries are sent to the
tail of the chain. By mapping the chain replication to the consistent
hashing ring, each virtual ID in FAWN-KV is part of R different
chains: it is the “tail” for one chain, a “mid” node in R−2 chains,
and the “head” for one. Figure 6 depicts a ring with six physical
nodes, where each has two virtual IDs (V = 2), using a replication
factor of three. In this figure, node C1 is thus the tail for range R1,
mid for range R2, and tail for range R3.

Figure 7 shows a put request for an item in range R1. The front-
end routes the put to the key’s successor, VID A1, which is the head
of the replica chain for this range. After storing the value in its
datastore, A1 forwards this request to B1, which similarly stores
the value and forwards the request to the tail, C1. After storing the
value, C1 sends the put response back to the front-end, and sends an
acknowledgment back up the chain indicating that the response was
handled properly.

For reliability, nodes buffer put requests until they receive the
acknowledgment. Because puts are written to an append-only log in
FAWN-DS and are sent in-order along the chain, this operation is
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simple: nodes maintain a pointer to the last unacknowledged put in
their datastore, and increment it when they receive an acknowledg-
ment. By using a purely log structured datastore, chain replication
with FAWN-KV becomes simply a process of streaming the growing
datastore from node to node.

Gets proceed as in chain replication—the front-end directly routes
the get to the tail of the chain for range R1, node C1, which responds
to the request. Chain replication ensures that any update seen by the
tail has also been applied by other replicas in the chain.

3.4.4 Joins and Leaves

When a node joins a FAWN-KV ring:

1. The new virtual node causes one key range to split into two.
2. The new virtual node must receive a copy of the R ranges of

data it should now hold, one as a primary and R−1 as a replica.
3. The front-end must begin treating the new virtual node as a

head or tail for requests in the appropriate key ranges.
4. Virtual nodes down the chain may free space used by key ranges

they are no longer responsible for.

The first step, key range splitting, occurs as described for FAWN-
DS. While this operation can occur concurrently with the rest (the
split and data transmission can overlap), for clarity, we describe the
rest of this process as if the split had already taken place.

After the key ranges have been split appropriately, the node must
become a working member of R chains. For each of these chains,
the node must receive a consistent copy of the datastore file corre-
sponding to the key range. The process below does so with minimal
locking and ensures that if the node fails during the data copy opera-
tion, the existing replicas are unaffected. We illustrate this process
in detail in Figure 8 where node C1 joins as a new middle replica
for range R2.

Phase 1: Datastore pre-copy. Before any ring membership
changes occur, the current tail for the range (VID E1) begins sending
the new node C1 a copy of the datastore log file. This operation
is the most time-consuming part of the join, potentially requiring
hundreds of seconds. At the end of this phase, C1 has a copy of the
log that contains all records committed to the tail.

Phase 2: Chain insertion, log flush and play-forward.
After C1’s pre-copy phase has completed, the front-end sends

a chain membership message that flushes through the chain. This
message plays two roles: first, it updates each node’s neighbor state
to add C1 to the chain; second, it ensures that any in-flight updates
sent after the pre-copy phase completed are flushed to C1.

More specifically, this message propagates in-order through B1,
D1, and E1, and is also sent to C1. Nodes B1, C1, and D1 update

D1B1

C1

E1
tail for R2

pre-copy

puts gets responses

Pre-copy

Chain insertion, Log flush

D1B1 E1

Old tail for R2

log flush

puts gets responses

C1

Figure 8: Phases of join protocol on node arrival.

their neighbor list, and nodes in the current chain forward the mes-
sage to their successor in the chain. Updates arriving at B1 after the
reception of the chain membership message now begin streaming
to C1, and C1 relays them properly to D1. D1 becomes the new
tail of the chain. At this point, B1 and D1 have correct, consistent
views of the datastore, but C1 may not: A small amount of time
passed between the time that the pre-copy finished and when C1 was
inserted into the chain. To cope with this, C1 logs updates from B1
in a temporary datastore, not the actual datastore file for range R2,
and does not update its in-memory hash table. During this phase, C1
is not yet a valid replica.

All put requests sent to B1 after it received the chain membership
message are replicated at B1, C1, and D1, and D1 forwards the chain
membership message directly to E1. Thus, the receipt of the chain
membership message at E1 signals that no further updates to this
range will arrive at E1. The old tail E1 then pushes all entries that
might have arrived in the time after C1 received the log copy and
before C1 was inserted in the chain, and C1 adds these entries to
the R2 datastore. At the end of this process, E1 sends the chain
membership message back to C1, confirming that all in-flight entries
have been flushed. C1 then merges (appends) the temporary log to
the end of the R2 datastore, updating its in-memory hash table as it
does so. The node briefly locks the temporary log at the end of the
merge to flush these in-flight writes.

After phase 2, C1 is a functioning member of the chain with a
fully consistent copy of the datastore. This process occurs R times
for the new virtual ID—e.g., if R = 3, it must join as a new head, a
new mid, and a new tail for one chain.

Joining as a head or tail: In contrast to joining as a middle node,
joining as a head or tail must be coordinated with the front-end to
properly direct requests to the correct node. The process for a new
head is identical to that of a new mid. To join as a tail, a node
joins before the current tail and replies to put requests. It does not
serve get requests until it is consistent (end of phase 2)—instead, its
predecessor serves as an interim tail for gets.

Leave: The effects of a voluntary or involuntary (failure-triggered)
leave are similar to those of a join, except that the replicas must
merge the key range that the node owned. As above, the nodes must
add a new replica into each of the R chains that the departing node
was a member of. This replica addition is simply a join by a new
node, and is handled as above.

Failure Detection: Nodes are assumed to be fail-stop [47]. Each
front-end exchanges heartbeat messages with its back-end nodes ev-
ery thb seconds. If a node misses f dthreshold heartbeats, the front-end
considers it to have failed and initiates the leave protocol. Because



the Join protocol does not insert a node into the chain until the major-
ity of log data has been transferred to it, a failure during join results
only in an additional period of slow-down, not a loss of redundancy.

We leave certain aspects of failure detection for future work. In
addition to assuming fail-stop, we assume that the dominant failure
mode is a node failure or the failure of a link or switch, but our
current design does not cope with a communication failure that
prevents one node in a chain from communicating with the next
while leaving each able to communicate with the front-ends. We
plan to augment the heartbeat exchange to allow nodes to report their
neighbor connectivity.

4. EVALUATION

We begin by characterizing the I/O performance of a wimpy node.
From this baseline, we then evaluate how well FAWN-DS performs
on this same node, finding that its performance is similar to the
node’s baseline I/O capability. To further illustrate the advantages of
FAWN-DS’s design, we compare its performance to an implementa-
tion using the general-purpose Berkeley DB, which is not optimized
for flash writes.

After characterizing individual node performance, we then study
a prototype FAWN-KV system running on a 21-node cluster. We
evaluate its energy efficiency, in queries per second per Watt, and
then measure the performance effects of node failures and arrivals. In
the following section, we then compare FAWN to a more traditional
cluster architecture designed to store the same amount of data and
meet the same query rates.

Evaluation Hardware: Our FAWN cluster has 21 back-end nodes
built from commodity PCEngine Alix 3c2 devices, commonly used
for thin-clients, kiosks, network firewalls, wireless routers, and other
embedded applications. These devices have a single-core 500 MHz
AMD Geode LX processor, 256 MB DDR SDRAM operating at
400 MHz, and 100 Mbit/s Ethernet. Each node contains one 4 GB
Sandisk Extreme IV CompactFlash device. A node consumes 3 W
when idle and a maximum of 6 W when deliberately using 100%
CPU, network and flash. The nodes are connected to each other
and to a 27 W Intel Atom-based front-end node using two 16-port
Netgear GS116 GigE Ethernet switches.

Evaluation Workload: FAWN-KV targets read-intensive, small
object workloads for which key-value systems are often used. The
exact object sizes are, of course, application dependent. In our
evaluation, we show query performance for 256 byte and 1 KB
values. We select these sizes as proxies for small text posts, user
reviews or status messages, image thumbnails, and so on. They
represent a quite challenging regime for conventional disk-bound
systems, and stress the limited memory and CPU of our wimpy
nodes.

4.1 Individual Node Performance
We benchmark the I/O capability of the FAWN nodes using io-
zone [22] and Flexible I/O tester [1]. The flash is formatted with the
ext2 filesystem and mounted with the noatime option to prevent
random writes for file access [35]. These tests read and write 1 KB
entries, the lowest record size available in iozone. The filesystem
I/O performance using a 3.5 GB file is shown in Table 1.

Seq. Read Rand Read Seq. Write Rand. Write
28.5 MB/s 1424 QPS 24 MB/s 110 QPS

Table 1: Baseline CompactFlash statistics for 1 KB entries.
QPS = Queries/second.

DS Size 1 KB Rand Read 256 B Rand Read
(in queries/sec) (in queries/sec)

10 KB 72352 85012
125 MB 51968 65412
250 MB 6824 5902
500 MB 2016 2449

1 GB 1595 1964
2 GB 1446 1613

3.5 GB 1150 1298

Table 2: Local random read performance of FAWN-DS.

4.1.1 FAWN-DS Single Node Local Benchmarks

Lookup Speed: This test shows the query throughput achieved by
a local client issuing queries for randomly distributed, existing keys
on a single node. We report the average of three runs (the standard
deviations were below 5%). Table 2 shows FAWN-DS 1 KB and
256 byte random read queries/sec as a function of the DS size. If the
datastore fits in the buffer cache, the node locally retrieves 50–85
thousand queries per second. As the datastore exceeds the 256 MB
of RAM available on the nodes, a larger fraction of requests go to
flash.

FAWN-DS imposes modest overhead from hash lookups, data
copies, and key comparisons, and it must read slightly more data
than the iozone tests (each stored entry has a header). The resulting
query throughput, however, remains high: tests reading a 3.5 GB
datastore using 1 KB values achieved 1,150 queries/sec compared
to 1,424 queries/sec from the filesystem. Using the 256 byte entries
that we focus on below achieved 1,298 queries/sec from a 3.5 GB
datastore. By comparison, the raw filesystem achieved 1,454 random
256 byte reads per second using Flexible I/O.

Bulk store Speed: The log structure of FAWN-DS ensures that
data insertion is entirely sequential. As a consequence, inserting two
million entries of 1 KB each (2 GB total) into a single FAWN-DS
log sustains an insert rate of 23.2 MB/s (or nearly 24,000 entries per
second), which is 96% of the raw speed that the flash can be written
through the filesystem.

Put Speed: In FAWN-KV, each FAWN node has R∗V FAWN-DS
files: each virtual ID adds one primary data range, plus an additional
R−1 replicated ranges. A node receiving puts for different ranges
will concurrently append to a small number of files (“semi-random
writes”). Good semi-random write performance is central to FAWN-
DS’s per-range data layout that enables single-pass maintenance
operations. We therefore evaluate its performance using five flash-
based storage devices.

Semi-random performance varies widely by device. Figure 9
shows the aggregate write performance obtained when inserting
2GB of data into FAWN-DS using five different flash drives as the
data is inserted into an increasing number of datastore files. All
SATA-based flash drives measured below use an Intel Atom-based
chipset because the Alix3c2 lacks a SATA port. The relatively low-
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sults in semi-random writes.

performance CompactFlash write speed slows with an increasing
number of files. The 2008 Intel X25-M and X25-E, which use
log-structured writing and preemptive block erasure, retain high
performance with up to 256 concurrent semi-random writes for the
2 GB of data we inserted; both the Mtron Mobi and Memoright
GT drop in performance as the number of files increases. The key
take-away from this evaluation is that Flash devices are capable
of handling the FAWN-DS write workload extremely well—but a
system designer must exercise care in selecting devices that actually
do so.

4.1.2 Comparison with BerkeleyDB

To understand the benefit of FAWN-DS’s log structure, we compare
with a general purpose disk-based database that is not optimized for
Flash. BerkeleyDB provides a simple put/get interface, can be used
without heavy-weight transactions or rollback, and performs well
versus other memory or disk-based databases. We configured Berke-
leyDB using both its default settings and using the reference guide
suggestions for Flash-based operation [4]. The best performance we
achieved required 6 hours (B-Tree) and 27 hours (Hash) to insert
seven million, 200 byte entries to create a 1.5 GB database. This
corresponds to an insert rate of 0.07 MB/s.

The problem was, of course, small writes: When the BDB store
was larger than the available RAM on the nodes (< 256 MB), both
the B-Tree and Hash implementations had to flush pages to disk,
causing many writes that were much smaller than the size of an erase
block.

That comparing FAWN-DS and BDB seems unfair is exactly
the point: even a well-understood, high-performance database will
perform poorly when its write pattern has not been specifically
optimized to Flash’s characteristics. We evaluated BDB on top of
NILFS2 [39], a log-structured Linux filesystem for block devices,
to understand whether log-structured writing could turn the random
writes into sequential writes. Unfortunately, this combination was
not suitable because of the amount of metadata created for small
writes for use in filesystem checkpointing and rollback, features
not needed for FAWN-KV—writing 200 MB worth of 256 B key-
value pairs generated 3.5 GB of metadata. Other existing Linux
log-structured flash filesystems, such as JFFS2 [23], are designed to
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work on raw flash, but modern SSDs, compact flash and SD cards
all include a Flash Translation Layer that hides the raw flash chips.
While future improvements to filesystems can speed up naive DB
performance on flash, the pure log structure of FAWN-DS remains
necessary even if we could use a more conventional backend: it
provides the basis for replication and consistency across an array of
nodes.

4.1.3 Read-intensive vs. Write-intensive Workloads

Most read-intensive workloads have at least some writes. For
example, Facebook’s memcached workloads have a 1:6 ratio of
application-level puts to gets [24]. We therefore measured the aggre-
gate query rate as the fraction of puts ranged from 0 (all gets) to 1
(all puts) on a single node (Figure 10).

FAWN-DS can handle more puts per second than gets because
of its log structure. Even though semi-random write performance
across eight files on our CompactFlash devices is worse than purely
sequential writes, it still achieves higher throughput than pure ran-
dom reads.

When the put-ratio is low, the query rate is limited by the get
requests. As the ratio of puts to gets increases, the faster puts signifi-
cantly increase the aggregate query rate. On the other hand, a pure
write workload that updates a small subset of keys would require
frequent cleaning. In our current environment and implementation,
both read and write rates slow to about 700–1000 queries/sec during
compaction, bottlenecked by increased thread switching and system
call overheads of the cleaning thread. Last, because deletes are
effectively 0-byte value puts, delete-heavy workloads are similar to
insert workloads that update a small set of keys frequently. In the
next section, we mostly evaluate read-intensive workloads because
it represents the target workloads for which FAWN-KV is designed.

4.2 FAWN-KV System Benchmarks
In this section, we evaluate the query rate and power draw of our
21-node FAWN-KV system.

System Throughput: To measure query throughput, we populated
the KV cluster with 20 GB of values, and then measured the maxi-
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mum rate at which the front-end received query responses for random
keys. We disabled front-end caching for this experiment. Figure 11
shows that the cluster sustained roughly 36,000 256 byte gets per
second (1,700 per second per node) and 24,000 1 KB gets per sec-
ond (1,100 per second per node). A single node serving a 512 MB
datastore over the network could sustain roughly 1,850 256 byte
gets per second per node, while Table 2 shows that it could serve the
queries locally at 2,450 256 byte queries per second per node. Thus,
a single node serves roughly 70% of the sustained rate that a single
FAWN-DS could handle with local queries. The primary reason
for the difference is the addition of network overhead and request
marshaling and unmarshaling. Another reason for difference is load
balance: with random key distribution, some back-end nodes receive
more queries than others, slightly reducing system performance.3

System Power Consumption: Using a WattsUp [55] power meter
that logs power draw each second, we measured the power consump-
tion of our 21-node FAWN-KV cluster and two network switches.
Figure 12 shows that, when idle, the cluster uses about 83 W, or 3
Watts per node and 10 W per switch. During gets, power consump-
tion increases to 99 W, and during insertions, power consumption is
91 W.4 Peak get performance reaches about 36,000 256 B queries/sec
for the cluster serving the 20 GB dataset, so this system, excluding
the front-end, provides 364 queries/Joule.

The front-end has a 1 Gbit/s connection to the backend nodes,
so the cluster requires about one low-power front-end for every
80 nodes—enough front-ends to handle the aggregate query traffic
from all the backends (80 nodes * 1500 queries/sec/node * 1 KB
/ query = 937 Mbit/s). Our prototype front-end uses 27 W, which
adds nearly 0.5 W per node amortized over 80 nodes, providing 330
queries/Joule for the entire system.

Network switches currently account for 20% of the power used
by the entire system. Our current cluster size affords the use of a flat
network hierarchy, but providing full bisection bandwidth for a large
cluster would require many more network switches, increasing the
ratio of network power to FAWN node power. Scaling networks to
support large deployments is a problem that affects today’s clusters
and remains an active area of research [2, 18, 16, 19]. While improv-
ing the network energy consumption of large FAWN clusters is a
topic of ongoing work, we note that recent fat-tree network topology
designs using many small commodity, low-power switches [2] would
impose only a fixed per-node network power overhead. Should the

3This problem is fundamental to random load-balanced systems. Terrace and Freed-
man [51] recently devised a mechanism for allowing queries to go to any node using
chain replication; in future work, we plan to incorporate this to allow us to direct queries
to the least-loaded replica, which has been shown to drastically improve load balance.

4Flash writes and erase require higher currents and voltages than reads do, but the
overall put power was lower because FAWN’s log-structured writes enable efficient bulk
writes to flash, so the system spends more time idle.
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and low load (bottom).

application design permit, sacrificing full bisection bandwidth can
trade reduced communication flexibility for improved network en-
ergy efficiency.

4.3 Impact of Ring Membership Changes
Node joins, leaves, or failures require existing nodes to split merge,
and transfer data while still handling puts and gets. In this section
we evaluate the impact of node joins on system query throughput
and the impact of maintenance operations such as local splits and
compaction on single node query throughput and latency.

Query Throughput During Node Join: In this test, we start a 20-
node FAWN-KV cluster populated with 10 GB of key-value pairs
and begin issuing get requests uniformly at random to the entire
key space. At t=25, we add a node to the ring and continue to issue
get requests to the entire cluster. For this experiment, we set R = 3
and V = 1. Figure 13 shows the resulting cluster query throughput
during a node join.

The joining node requests pre-copies for R = 3 ranges, one range
for which it is the tail and two ranges as the head and mid. The three
nodes that pre-copy their datastores to the joining node experience
a one-third reduction in external query throughput, serving about
1,000 queries/sec. Pre-copying data does not cause significant I/O
interference with external requests for data—the pre-copy operation
requires only a sequential read of the datastore and bulk sends over
the network. The lack of seek penalties for concurrent access on
flash together with the availability of spare network capacity results
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Figure 14: Get query rates during background operations for
high (top) and low (bottom) external query loads.

in only a small drop in performance during pre-copying. The other
17 nodes in our cluster are not affected by this join operation and
serve queries at their normal rate. The join operation completes long
after pre-copies finished in this experiment due to the high external
query load, and query throughput returns back to the maximum rate.

The experiment above stresses the cluster by issuing requests at
the maximum rate the cluster can handle. But most systems offer
performance guarantees only for loads below maximum capacity.
We run the same experiment above but with an external query load
at about 30% of the maximum supported query rate. The three
nodes sending pre-copies have enough spare resources available
to perform their pre-copy without affecting their ability to serve
external queries, so the system’s throughput does not drop when
the new node is introduced. The join completes shortly after the
pre-copies finishes.

Query Throughput During Maintenance Operations: Mainte-
nance operations perform sequential reads of one file and sequential
writes into another. In the node join experiment above, we deferred
performing the local split/merge operations until after the node join
completed to minimize the performance impact during the node join.

Figure 14(top) shows the impact of split, merge, and compaction
on external get queries sent at high load to the 512 MB datastore.
In this experiment, the key range is initially split unevenly: 25% of
the original key space is split into a second FAWN-DS datastore. As
a result, the split operation only writes 25% of its records into the
second datastore. Merging the two datastores back into one is more
“intense” than a split because the merge requires a read and write of
nearly every record in the datastore being merged rather than just a
fraction of the records. Consequently, the FAWN-DS file with fewer
records should always be merged into the larger store to minimize
the completion time of the merge operation.

Compaction has a query impact between both split and merge—
compaction must write most of the entries in the log, except for
out-of-range, deleted, or orphaned entries. However, because it must
read and write every valid record in the datastore, the length of the
operation is typically longer than either split and merge.

Figure 14(bottom) shows the same experiment with a query rate
set at 30% of the maximum supported, showing that the impact of
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maintenance operations on query rate is minimal when the incoming
rate is below half of the node’s maximum query capacity.

Impact of Split on Query Latency: Figure 15 shows the distri-
bution of query latency for three workloads: a pure get workload
issuing gets at the maximum rate (Max Load), a 500 requests per
second workload with a concurrent Split (Split-Low Load), and a
1500 requests per second workload with a Split (Split-High Load).

In general, accesses that hit buffer cache are returned in 300 µs
including processing and network latency. When the accesses go
to flash, the median response time is 800 µs. Even during a split,
the median response time remains under 1 ms. The median latency
increases with load, so the max load, get-only workload has a slightly
higher median latency than the lower load splits.

Many key-value systems care about 99.9th percentile latency
guarantees as well as fast average-case performance. During normal
operation, request latency is very low: 99.9% of requests take under
26.3 ms, and 90% take under 2 ms. During a split with low external
query load, the additional processing and locking extend 10% of
requests above 10 ms. Query latency increases briefly at the end of a
split when the datastore is locked to atomically add the new datastore.
The lock duration is 20–30 ms on average, but can rise to 100 ms
if the query load is high, increasing queuing delay for incoming
requests during this period. The resulting 99.9%-ile response time
during the low-activity split is 491 ms. For a high-rate request
workload, the incoming request rate is occasionally higher than can
be serviced during the split. Incoming requests are buffered and
experience additional queuing delay: the 99.9%-ile response time is
611 ms. Fortunately, these worst-case response times are still on the
same order as those worst-case times seen in production key-value
systems [10].

With larger values (1KB), query latency during Split increases
further due to a lack of flash device parallelism—a large write to the
device blocks concurrent independent reads, resulting in poor worst-
case performance. Modern SSDs, in contrast, support and require
request parallelism to achieve high flash drive performance [40];
a future switch to these devices could greatly reduce the effect of
background operations on query latency.

We also measured the latency of put requests during normal opera-
tion. With R=1, median put latency was about 500µs, with 99.9%ile
latency extending to 24.5 ms. With R=3, put requests in chain repli-



cation are expected to incur additional latency as the requests get
routed down the chain. Median latency increased by roughly three
times to 1.58 ms, with 99.9%ile latency increasing only to 30 ms.5

5. ALTERNATIVE ARCHITECTURES

When is the FAWN approach likely to beat traditional architectures?
We examine this question in two ways. First, we examine how much
power can be saved on a conventional system using standard scaling
techniques. Next, we compare the three-year total cost of ownership
(TCO) for six systems: three “traditional” servers using magnetic
disks, flash SSDs, and DRAM; and three hypothetical FAWN-like
systems using the same storage technologies.

5.1 Characterizing Conventional Nodes

We first examine a low-power, conventional desktop node configured
to conserve power. The system uses an Intel quad-core Q6700
CPU with 2 GB DRAM, an Mtron Mobi SSD, and onboard gigabit
Ethernet and graphics.

Power Saving Techniques: We configured the system to use DVFS
with three p-states (2.67 GHz, 2.14 GHz, 1.60 GHz). To maximize
idle time, we ran a tickless Linux kernel (version 2.6.27) and dis-
abled non-system critical background processes. We enabled power-
relevant BIOS settings including ultra-low fan speed and processor
C1E support. Power consumption was 64 W when idle with only
system critical background processes and 83-90 W with significant
load.

Query Throughput: Raw (iozone) random reads achieved 4,771
(256 B) queries/sec and FAWN-DS achieved 4,289 queries/second.
The resulting full-load query efficiency was 52 queries/Joule, com-
pared to the 346 queries/Joule of a fully populated FAWN cluster.
Even a three-node FAWN cluster that achieves roughly the same
query throughput as the desktop, including the full power draw of an
unpopulated 16-port gigabit Ethernet switch (10 W), achieved 240
queries/Joule. As expected from the small idle-active power gap of
the desktop (64 W idle, 83 W active), the system had little room for
“scaling down”—the queries/Joule became drastically worse as the
load decreased. The idle power of the desktop is dominated by fixed
power costs, while half of the idle power consumption of the 3-node
FAWN cluster comes from the idle (and under-populated) Ethernet
switch.

Table 3 extends this comparison to clusters of several other sys-
tems.6 As expected, systems with disks are limited by seek times:
the desktop above serves only 171 queries per second, and so pro-
vides only 1.96 queries/Joule—two orders of magnitude lower than
a fully-populated FAWN. This performance is not far off from what
the disks themselves can do: they draw 10 W at load, providing
only 17 queries/Joule. Low-power laptops with magnetic disks fare
little better. The desktop (above) with an SSD performs best of the
alternative systems, but is still far from the efficiency of a FAWN
cluster.

5When the workload consisted of a mixture of puts and gets, 99.9%ile latency
increased significantly—our naive implementation used a single queue for all requests,
so puts propagating between neighbors would often get queued behind a large set of
external get requests, further increasing latency. Using separate queues for external
messages and neighbor messages would reduce this worst-case latency.

6The Soekris is a five-year-old embedded communications board.

System / Storage QPS Watts Queries
Joule

Embedded Systems
Alix3c2 / Sandisk(CF) 1298 3.75 346
Soekris / Sandisk(CF) 334 3.75 89

Traditional Systems
Desktop / Mobi(SSD) 4289 83 51.7
MacbookPro / HD 66 29 2.3
Desktop / HD 171 87 1.96

Table 3: Query performance and efficiency for different ma-
chine configurations.

5.2 General Architectural Comparison
A general comparison requires looking not just at the queries per
Joule, but the total system cost. In this section, we examine the
3-year total cost of ownership (TCO), which we define as the sum
of the capital cost and the 3-year power cost at 10 cents per kWh.

Because the FAWN systems we have built use several-year-old
technology, we study a theoretical 2009 FAWN node using a low-
power CPU that consumes 10–20 W and costs ∼$150 in volume.
We in turn give the benefit of the doubt to the server systems we
compare against—we assume a 1 TB disk exists that serves 300
queries/sec at 10 W.

Our results indicate that both FAWN and traditional systems have
their place—but for the small random access workloads we study,
traditional systems are surprisingly absent from much of the solution
space, in favor of FAWN nodes using either disks, SSDs, or DRAM.

Key to the analysis is a question: why does a cluster need nodes?
The answer is, of course, for both storage space and query rate.
Storing a DS gigabyte dataset with query rate QR requires N nodes:

N = max

(
DS
gb

node

,
QR
qr

node

)

With large datasets with low query rates, the number of nodes
required is dominated by the storage capacity per node: thus, the
important metric is the total cost per GB for an individual node.
Conversely, for small datasets with high query rates, the per-node
query capacity dictates the number of nodes: the dominant metric
is queries per second per dollar. Between these extremes, systems
must provide the best tradeoff between per-node storage capacity,
query rate, and power cost.

Table 4 shows these cost and performance statistics for several
candidate systems. The “traditional” nodes use 200W servers that
cost $1,000 each. Traditional+Disk pairs a single server with
five 5 TB high-speed disks capable of 300 queries/sec, each disk
consuming 10 W. Traditional+SSD uses two PCI-E Fusion-IO
80 GB Flash SSDs, each also consuming about 10 W (Cost: $3k).
Traditional+DRAM uses eight 8 GB server-quality DRAM mod-
ules, each consuming 10 W. FAWN+Disk nodes use one 2 TB
7200 RPM disk: FAWN nodes have fewer connectors available on
the board. FAWN+SSD uses one 32 GB Intel SATA Flash SSD ca-
pable of 35,000 random reads/sec [40] and consuming 2 W ($400).
FAWN+DRAM uses a single 2 GB, slower DRAM module, also
consuming 2 W.

Figure 16 shows which base system has the lowest cost for a
particular dataset size and query rate, with dataset sizes between
100 GB and 10 PB and query rates between 100 K and 1 billion per



System Cost W QPS Queries
Joule

GB
Watt

TCO
GB

TCO
QPS

Traditionals:
5-2TB HD $2K 250 1500 6 40 0.26 1.77
160GB PCIe SSD $8K 220 200K 909 0.72 53 0.04
64GB DRAM $3K 280 1M 3.5K 0.23 59 0.004

FAWNs:
2TB Disk $350 20 250 12.5 100 0.20 1.61
32GB SSD $500 15 35K 2.3K 2.1 16.9 0.015
2GB DRAM $250 15 100K 6.6K 0.13 134 0.003

Table 4: Traditional and FAWN node statistics
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Figure 16: Solution space for lowest 3-year TCO as a function
of dataset size and query rate.

second. The dividing lines represent a boundary across which one
system becomes more favorable than another.

Large Datasets, Low Query Rates: FAWN+Disk has the lowest
total cost per GB. While not shown on our graph, a traditional
system wins for exabyte-sized workloads if it can be configured
with sufficient disks per node (over 50), though packing 50 disks per
machine poses reliability challenges.

Small Datasets, High Query Rates: FAWN+DRAM costs the
fewest dollars per queries/second, keeping in mind that we do not
examine workloads that fit entirely in L2 cache on a traditional node.
This somewhat counterintuitive result is similar to that made by
the intelligent RAM project, which coupled processors and DRAM
to achieve similar benefits [5] by avoiding the memory wall. We
assume the FAWN nodes can only accept 2 GB of DRAM per node,
so for larger datasets, a traditional DRAM system provides a high
query rate and requires fewer nodes to store the same amount of data
(64 GB vs 2 GB per node).

Middle Range: FAWN+SSDs provide the best balance of storage
capacity, query rate, and total cost. As SSD capacity improves, this
combination is likely to continue expanding into the range served
by FAWN+Disk; as SSD performance improves, so will it reach into
DRAM territory. It is therefore conceivable that FAWN+SSD could
become the dominant architecture for a wide range of random-access
workloads.

Are traditional systems obsolete? We emphasize that this analysis
applies only to small, random access workloads. Sequential-read
workloads are similar, but the constants depend strongly on the per-
byte processing required. Traditional cluster architectures retain
a place for CPU-bound workloads, but we do note that architec-
tures such as IBM’s BlueGene successfully apply large numbers of

low-power, efficient processors to many supercomputing applica-
tions [14]—but they augment their wimpy processors with custom
floating point units to do so.

Our definition of “total cost of ownership” also ignores several
notable costs: In comparison to traditional architectures, FAWN
should reduce power and cooling infrastructure, but may increase
network-related hardware and power costs due to the need for more
switches. Our current hardware prototype improves work done per
volume, thus reducing costs associated with datacenter rack or floor
space. Finally, of course, our analysis assumes that cluster software
developers can engineer away the human costs of management—an
optimistic assumption for all architectures. We similarly discard
issues such as ease of programming, though we ourselves selected
an x86-based wimpy platform precisely for ease of development.

6. RELATED WORK

FAWN follows in a long tradition of ensuring that systems are bal-
anced in the presence of scaling challenges and of designing systems
to cope with the performance challenges imposed by hardware ar-
chitectures.

System Architectures: JouleSort [44] is a recent energy-
efficiency benchmark; its authors developed a SATA disk-based
“balanced” system coupled with a low-power (34 W) CPU that sig-
nificantly out-performed prior systems in terms of records sorted per
joule. A major difference with our work is that the sort workload
can be handled with large, bulk I/O reads using radix or merge sort.
FAWN targets even more seek-intensive workloads for which even
the efficient CPUs used for JouleSort are excessive, and for which
disk is inadvisable.

More recently, several projects have begun using low-power
processors for datacenter workloads to reduce energy consump-
tion [6, 34, 11, 50, 20, 30]. The Gordon [6] hardware architecture
argues for pairing an array of flash chips and DRAM with low-power
CPUs for low-power data intensive computing. A primary focus of
their work is on developing a Flash Translation Layer suitable for
pairing a single CPU with several raw flash chips. Simulations on
general system traces indicate that this pairing can provide improved
energy-efficiency. Our work leverages commodity embedded low-
power CPUs and flash storage for cluster key-value applications,
enabling good performance on flash regardless of FTL implemen-
tation. CEMS [20], AmdahlBlades [50], and Microblades [30] also
leverage low-cost, low-power commodity components as a building
block for datacenter systems, similarly arguing that this architecture
can provide the highest work done per dollar and work done per
joule. Microsoft has recently begun exploring the use of a large clus-
ter of low-power systems called Marlowe [34]. This work focuses
on taking advantage of the very low-power sleep states provided
by this chipset (between 2–4 W) to turn off machines and migrate
workloads during idle periods and low utilization, initially target-
ing the Hotmail service. We believe these advantages would also
translate well to FAWN, where a lull in the use of a FAWN cluster
would provide the opportunity to significantly reduce average en-
ergy consumption in addition to the already-reduced peak energy
consumption that FAWN provides. Dell recently designed and has
begun shipping VIA Nano-based servers consuming 20–30 W each
for large webhosting services [11].

Considerable prior work has examined ways to tackle the “mem-
ory wall.” The Intelligent RAM (IRAM) project combined CPUs
and memory into a single unit, with a particular focus on energy effi-
ciency [5]. An IRAM-based CPU could use a quarter of the power



of a conventional system to serve the same workload, reducing total
system energy consumption to 40%. FAWN takes a thematically
similar view—placing smaller processors very near flash—but with a
significantly different realization. Similar efforts, such as the Active
Disk project [43], focused on harnessing computation close to disks.
Schlosser et al. proposed obtaining similar benefits from coupling
MEMS with CPUs [46].

Databases and Flash: Much ongoing work is examining the use
of flash in databases, examining how database data structures and
algorithms can be modified to account for flash storage strengths and
weaknesses [53, 28, 35, 37, 29]. Recent work concluded that NAND
flash might be appropriate in “read-mostly, transaction-like work-
loads”, but that flash was a poor fit for high-update databases [35].
This work, along with FlashDB [37] and FD-Trees [29], also noted
the benefits of a log structure on flash; however, in their environ-
ments, using a log-structured approach slowed query performance
by an unacceptable degree. Prior work in sensor networks [8, 32]
has employed flash in resource-constrained sensor applications to
provide energy-efficient filesystems and single node object stores.
In contrast to the above work, FAWN-KV sacrifices range queries
by providing only primary-key queries, which eliminates complex
indexes: FAWN’s separate data and index can therefore support
log-structured access without reduced query performance. Indeed,
with the log structure, FAWN’s performance actually increases
with a moderate percentage of writes. FAWN-KV also applies
log-structured data organization to speed maintenance and failover
operations in a clustered, datacenter environment.

Filesystems for Flash: Several filesystems are specialized for use
on flash. Most are partially log-structured [45], such as the popular
JFFS2 (Journaling Flash File System) for Linux. Our observations
about flash’s performance characteristics follow a long line of re-
search [12, 35, 58, 37, 40]. Past solutions to these problems include
the eNVy filesystem’s use of battery-backed SRAM to buffer copy-
on-write log updates for high performance [57], followed closely by
purely flash-based log-structured filesystems [26].

High-throughput Storage and Analysis: Recent work such as
Hadoop or MapReduce [9] running on GFS [15] has examined tech-
niques for scalable, high-throughput computing on massive datasets.
More specialized examples include SQL-centric options such as the
massively parallel data-mining appliances from Netezza [38]. As op-
posed to the random-access workloads we examine for FAWN-KV,
these systems provide bulk throughput for massive datasets with low
selectivity or where indexing in advance is difficult. We view these
workloads as a promising next target for the FAWN approach.

Distributed Hash Tables: Related cluster and wide-area hash
table-like services include Distributed data structure (DDS) [17],
a persistent data management layer designed to simplify cluster-
based Internet services. FAWN’s major points of differences with
DDS are a result of FAWN’s hardware architecture, use of flash,
and focus on energy efficiency—in fact, the authors of DDS noted
that a problem for future work was that “disk seeks become the
overall bottleneck of the system” with large workloads, precisely
the problem that FAWN-DS solves. These same differences apply
to systems such as Dynamo [10] and Voldemort [41]. Systems such
as Boxwood [31] focus on the higher level primitives necessary
for managing storage clusters. Our focus was on the lower-layer
architectural and data-storage functionality.

Sleeping Disks: A final set of research examines how and when
to put disks to sleep; we believe that the FAWN approach compli-
ments them well. Hibernator [59], for instance, focuses on large
but low-rate OLTP database workloads (a few hundred queries/sec).

Ganesh et al. proposed using a log-structured filesystem so that a
striping system could perfectly predict which disks must be awake
for writing [13]. Finally, Pergamum [49] used nodes much like
our wimpy nodes to attach to spun-down disks for archival storage
purposes, noting that the wimpy nodes consume much less power
when asleep. The system achieved low power, though its throughput
was limited by the wimpy nodes’ Ethernet.

7. CONCLUSION

FAWN pairs low-power embedded nodes with flash storage to pro-
vide fast and energy efficient processing of random read-intensive
workloads. Effectively harnessing these more efficient but memory
and compute-limited nodes into a usable cluster requires a re-design
of many of the lower-layer storage and replication mechanisms. In
this paper, we have shown that doing so is both possible and desir-
able. FAWN-KV begins with a log-structured per-node datastore to
serialize writes and make them fast on flash. It then uses this log
structure as the basis for chain replication between cluster nodes,
providing reliability and strong consistency, while ensuring that
all maintenance operations—including failure handling and node
insertion—require only efficient bulk sequential reads and writes.
Our 4-year-old FAWN nodes delivered over an order of magnitude
more queries per Joule than conventional disk-based systems, and
our preliminary experience using Intel Atom-based systems paired
with SATA-based Flash drives shows that they can provide over
1000 queries/Joule, demonstrating that the FAWN architecture has
significant potential for many I/O-intensive workloads.
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