
Scalable Multicast Platforms for a New
Generation of Robust Distributed Applications

Ken Birman, Mahesh Balakrishnan, Danny Dolev, Tudor Marian, Krzysztof Ostrowski, Amar Phanishayee

ABSTRACT1

As distributed systems scale up and are deployed into
increasingly sensitive settings, demand is rising for a new
generation of communications middleware in support of
application-level critical-computing uses. Ricochet, Tempest
and QuickSilver are multicast-based systems developed to
respond to this need. Ricochet and QuickSilver are multicast
platforms; both are exceptionally scalable and support fault-
tolerance properties that match closely with the needs of high-
availability applications. Ricochet was designed to support
time-critical applications replicated for scalability on data
centers and clusters. These are typically coded in Java and run
under Linux. Tempest is layered over Ricochet and automates
most tasks of programming services for data centers. In
contrast, QuickSilver focuses on high throughput and is
targeted towards very large deployments of desktop computing
systems, in support of publish-subscribe, event notification or
media dissemination applications. In this paper we offer an
overview of the systems and some of the new systems
embeddings that, we believe, make them far easier to use than
was the case in prior multicast platforms.

I. INTRODUCTION
Distributed computing systems are confronting a wide range of
challenges associated with limits of the prevailing service
oriented architectures and platforms. By service oriented
architectures, or SOAs, we refer to Web Services, CORBA
and J2EE: the most popular standards for interconnecting
client computing systems with servers over the Internet. These
invite the developer to interconnect systems that previously
have been relatively incompatible. They standardize such
aspects as connection establishment, synchronous and
asynchronous request invocation, and representation of
application data in messages. They support transactions, and a
reliability model based on message queuing middleware.
SOAs make it so easy to integrate applications that developers
with almost no specialized distributed computing skills can

1 Contact information for first author: ken@cs.cornell.edu;
Dept. of Computer Science, Cornell University. Dolev was on
sabbatical from the Hebrew University in Jerusalem, and
Phanishayee is now a graduate student at CMU. This work
was support in part by grants from AFRL, AFOSR, DARPA,
NSF and Intel Corporation.

now create sophisticated distributed systems. Industry leaders
such as Bill Gates and Larry Ellison speak of a services
“revolution”, and moves are underway to create new kinds of
electronic health record systems, military command and
control systems, government services systems, banking
systems and a host of other similar applications that will use
these standards.

Yet as we deploy new generations of sensitive computing
applications on SOAs, we’ll face tough technical challenges.
Some of these systems will require high availability, and hence
need a way to replicate data and application state. Distributed
security and management applications need ways to sense
events occurring at many locations system-wide and to report
those events to groups of actuators where appropriate actions
may be triggered. Some applications need to stream data at
high rates to groups of recipients, a pattern seen in
collaboration systems, computer gaming, embedded control
systems, IPTV and other media delivery systems. Some
applications must guarantee rapid responsiveness, even as they
scale up to accommodate potentially high loads. Adaptive
mechanisms are required to handle surges in demand. Self-
monitoring/self-repair mechanisms are needed to automate
problem diagnosis and repair after a crash or other disruption
occurs. Distributed security architectures need ways to
replicate keys or security policies at groups of endpoints where
those keys will be used to encrypt or decrypt traffic, and to
update those kinds of information as conditions change.

Unfortunately, existing development platforms offer limited
options for solving the kinds of distributed communications
problems just mentioned. Our belief is that this is primarily a
result of a communications issue: the service architecture
standards have embraced point-to-point TCP connections to an
overwhelming degree. By placing such a strong emphasis on
the client-server data pathway, SOAs have been inattentive to
server-to-{set-of-clients} and server replication data patterns
that arise in the cases just enumerated.

Thus, for large classes of applications, a modern developer
faces a tough choice. One option is to work within the existing
architectural standards and tools, but this implies that the
system will be limited to the kinds of scalability options
available in three-tier database architectures. A second option
is to simply abandon such goals as fault-tolerance, scalability,
distributed coherent caching for high performance, or certain
forms of distributed security. And the third option is to build

some form of non-standard, home-brew solution that departs
from the most widely used standard tools and platforms, and
hence will make the application harder to build, harder to
deploy and operate, and ultimately more costly.

At Cornell, a new research project is underway that seeks to
break through these barriers by creating a fourth option. Our
goal is to create new communication solutions that:
• Can be elegantly embedded into existing service-oriented

platforms, in a way that will make it as easy to exploit
these tools as it is to build client-server systems today.

• Scale extremely well. One reason for the problems we’ve
cited is that prior generations of reliable communications
platforms scaled poorly (most critically, in the number of
groups to which an application can belong). These systems
need to scale in multiple dimensions: groups, processes,
network size, data rates and message sizes.

• Permit reliability and quality of service options to be
tailored to match application requirements.

• Perform extremely well. We seek to equal or exceed the
performance developers could achieve with specialized
hand-crafted solutions.

This paper is limited in length, making it impossible to discuss
these issues while also providing technical details for the
multicast platforms reported below, Ricochet and QuickSilver,
and for Tempest, the development tool that runs on Ricochet.
Accordingly, in this paper we limit ourselves to a broad
overview that touches on the major innovations of the effort
but omits specifics such as details of protocol designs,
engineering decisions, integration with the host platforms
(Windows and Linux), and evaluation. However, the
interested reader will find this sort of detail for QuickSilver in
[4, 3, 10, 11, 12], for Ricochet in [6, 7, 2] and for Tempest in
[1]. These systems are available for no-fee download from
Cornell’s web server [9], with source provided on request.

II. TARGET ENVIRONMENT
Early in our effort, we realized that even though multicast
applications arise in many settings, the type of system
appropriate for addressing server replication issues in a data
center or cluster differs from the type of system needed in
corporate LAN settings or the wide-area Internet.

A. Ricochet
Modern data centers consist of large numbers of relatively
homogeneous nodes interconnected with high-speed, low
latency switched networks to host applications that are cloned.
Doing so allows work to be load-balanced either as requests
arrive directly from web clients, or after they are vectored
through a front-end that parallelizes them by issuing
concurrent requests to one or more services. The need for
scalable multicast arises in the context of replicating the state
of the cloned services. Most data centers are moving to web
services standards, and Linux and Java are the most common
platforms used to build new applications in such settings.

We targeted Ricochet to this environment, and started by
asking ourselves what reliability, scalability and quality of
service requirements arise in such settings:
• Reliability. We undertook a series of experimental studies

aimed at quantifying the types of failures that actually
occur in large data centers. From this we determined that
packet loss is extremely uncommon in data center
networks, but surprisingly easy to provoke within the
relatively slower commodity operating systems that run on
the inexpensive computing nodes popular in such settings.
Moreover, when an overloaded operating system drops
packets, it often drops several in a row; histograms of
packet loss revealed that short bursty episodes of loss were
common (these loss bursts rarely exceeded 20 packets).
Node and application instability (crashes, freeze-up or
temporarily sluggish operation) was also common.
Knowing that these problems actually arise in practice, a
reliable multicast communication layer should be designed
to overcome them.
Scalability. When services are developed using modern
tools, it is common for what the end-user sees as a single
service to be implemented as a set of communicating
components. These are often grouped on a single node to
exploit shared-memory or other high speed
communication options. Thus, when a service is cloned to
scale it out, it is common to see sets of components that
must be cloned, such that one instance of each will run on
each of a set of nodes. Moreover, caches are widely used
to offload read-only work from heavily loaded servers
such as databases or file systems, and these co-reside with
applications that issue reads. Accordingly, if multicasts
are used to update the caches and to update the cloned
server states, nodes within a data center will often
“belong” to large numbers of heavily overlapping
communication groups. Publish-subscribe gives rise to a
similar pattern, if one thinks of each topic as mapping to
an underlying communication group.

Accordingly, data centers that use multicast (or publish-
subscribe) need support for communication in large
numbers of overlapping groups. As the data center scales
up, the aggregate load on the multicast system will rise;
this makes it important that the implementation be fully
decentralized. This is important because most off-the-
shelf multicast products vector multicast communication
through some form of central server. In the settings we
care about, that server would become overloaded and
emerge as a bottleneck. However, groups will rarely
become very large, because it is rare to clone a service
onto more than a few tens of nodes – in dialog with
companies such as Amazon, Google, eBay and others,
we’ve heard of a few examples of very large groups, but
many examples that require smaller-scale replication.

• Time-criticality and other quality of service properties. A
major end-user objective in porting a service to a data
center is to achieve rapid responsiveness for a much larger
workload than would be possible with a single instance of
the service, even on a high-speed computing node. For

this reason, rapid response is a key metric in the eyes of
users – even users who don’t think of themselves as
needing a “real time” solution. The insight is probably
obvious: one buys extra nodes to maintain rapid response
despite higher load. This time-criticality property is not
supported in any existing system or product. Many
applications also require ordered delivery. Only some
applications require absolute reliability guarantees or
“hard” real-time delivery; surprisingly often, a high
quality solution that offers extremely good speed and
scalability, but that might be unable to recover some small
percentage of lost packets, is quite acceptable. Instead,
one would prefer an end-to-end consistency repair
mechanism that can detect and repair inconsistent clones;
such a mechanism would do double-duty, fixing
application level problems caused by bugs, but also
kicking in if a message is dropped infrequently.

These goals and insights motivated our design of Ricochet and
Tempest. Ricochet implements a new time-critical multicast
protocol that offers tunable but high reliability, can recover
from bursty packet loss, scales extremely well in the number
of groups to which each node belongs, and is particularly
notable for guaranteeing rapid message delivery with very
predictable latency distributions. Tempest, built over
Ricochet, automates the steps in cloning a web services
application and provides end-to-end consistency checking and
repair mechanisms that can recover the application if it suffers
some form of transient fault.

At the core of Ricochet is a new time -critical repair
mechanism that employs lateral error correction [6]. This is a
scheme whereby a receiver periodically computes an error
correction packet by XOR-ing together packets it receives
across some subset of groups it belongs to and then sending
that packet to other receivers that belong in that same set of
groups (Figures 1, 2). IP Multicast is used to transmit
messages unreliably, and the error correction packets enable
Ricochet to recover lost messages very quickly. Receivers can
reconstruct any single missing packet from the error correction
packets they receive, and detect multi-packet losses. Using an
appropriate “stride” (meaning that the messages XOR-ed
together in any given LEC packet are sufficiently separate
from one-another in the receive sequence), Ricochet also
overcomes bursty loss.

Most lost packets are recovered by Ricochet within a few
milliseconds through the proactive lateral error correction
traffic. For the small percentage that can’t be recovered
proactively, Ricochet uses reactive negative acknowledgments
to request retransmissions of the packet from the sender,
achieving any desired level of reliability on the multicast data.

Ricochet achieves extreme scalability in the number of groups
in the system, allowing nodes to join as many as a thousand
groups without impairing loss recovery latencies. Whereas
existing reliable multicast protocols discover packet loss with
latency inversely proportional to the data rate at a single sender

in a single group, Ricochet’s discovery latency is dependent on
the total incoming data rate at a receiver, across all groups and
all senders.

Ricochet does not provide ordered message delivery on its own
– this is done by a separate ordering layer called PLATO [2].
Traditional ordering protocols deliver messages to the
application only after conservatively establishing the delivery
order. In contrast, Plato belongs to a class of protocols which
optimistically deliver messages to the application and rely on
rollbacks to undo incorrectly ordered message deliveries.

PLATO optimistically delivers only those messages for which
it believes there to be little risk of out-of-order delivery. To
assess this risk, it leverages several observations. Keep in
mind that IP Multicast messages are delivered almost
simultaneously at all receivers in a data center network. Thus,
nodes are at risk of receiving messages in different order only
when two messages from different senders are sent at almost
the same time, or secondly, if one receiver loses a burst of
messages in its kernel buffer and another doesn’t, causing a
gap in the delivery sequence. PLATO predicts the occurrence
of these two events by buffering incoming messages long
enough to observe the inter-arrival delays of consecutive

Groups A 1..A100

Groups B1..B100

Groups C 1..C100

in 300
groups

sending
messages
in multiple

groups

Signed up
to 100
groups

Figure 1: A collection of overlapping groups, with a
sender transmitting multicasts in two groups.

Figure 2: Ricochet introduces "lateral error correction",
whereby error correction data is proactively multicast by
other receivers in overlap regions. Lost data is often
recovered before the sender can detect the loss.

messages. A small delay between consecutive messages
predicts heightened likelihood of out-of-order arrival.

To see this, notice that in the first case just mentioned, if two
messages are multicast by two senders at around the same
time, they will arrive at each receiver with a small inter-arrival
delay. In the second case, if a receiver experiences a buffer
overflow in its kernel, it will subsequently attempt to catch up
by rapidly dequeueing packets into application space, resulting
in a sequence of arrivals with very low delays in between.

Hence, if two messages are separated by a sufficiently long
gap, PLATO delivers the first without waiting for addit ional
ordering information. On the other hand, if messages arrive in
quick succession, PLATO withholds them from the application
until it establishes the correct order. This is done by
designating one group member as a sequencer node that
periodically multicasts the canonical ordering for the group.

In practice, the PLATO scheme delivers a large fraction of
messages with very little delay (2 or 3 milliseconds), a smaller
fraction with the delay of a conservative ordering protocol
(tens of milliseconds), and a miniscule fraction (<1%) with a
delay of a hundred milliseconds or more, consisting of
optimistically delivered messages which were later found to be
in incorrect order and rolled back. Together, PLATO and
Ricochet exploit the natural properties of the underlying
hardware to provide very fast communication in the average
case. The probabilistic techniques employed by the protocols
scale very well in multiple dimensions.

B. Tempest
It is important to embed solutions into appropriate platforms in
natural ways. Ricochet is integrated with the Apache Axis2
web services platform, but many users prefer higher-level
tools. Accordingly, we are building a new system called
Tempest [1], which automatically transforms web services
applications into cloned groups of servers (Figures 3, 4).
These use Ricochet for update propagation, but also have a
Tempest-provided mechanism for detecting crashes and
restarting failed services, checkpointing, cold startup, and even
detecting and repairing any data inconsistency that might arise
at runtime. The repair mechanism can compensate in the
unlikely event that Ricochet is unable to recover a lost packet,
but can also detect and repair many application-level problems
that leaves one clone inconsistent with the others .

Tempest accomplishes of this by intervening at two places.
First, when a web service is invoked, Tempest substitutes its
own invocation protocol for the one used by standard client-
side web services platforms; this protocol captures the
invocation, adds a unique identifier and some other
information, and then sends it via Ricochet. The required stub
can be inserted automatically in many cases. Second, Tempest
intervenes within the service itself. The application developer
is asked to manage any “distributed state” by storing it in a
special collection classes inherited from the Tempest

framework. The collection classes mimic the standard Java
collections while the stored collection items mimic Java Beans,
hence both should look familiar to many developers. Knowing
where the state for the service is stored, Tempest can access it
to make checkpoints, compare states between components, etc.
The whole mechanism is almost completely transparent to the
developer.
All aspects have been designed to ensure that a cloned time -

critical application will have excellent timing properties.
Tempest thus enables componentized data center application
development, where a programmer with few specialized
distributed systems skills is able to build a high-performance,
scalable, fault-tolerant, self-managed and self-repairing
solution that scales out and achieves high performance even
when subjected to heavy loads.

C. QuickSilver

In contrast to Ricochet, QuickSilver focuses on platform
support for new kinds of client applications in which group
communication is used for event and media stream delivery, or
for the other kinds of purposes outlined at the outset of this
paper. Unlike the nodes in a data center, client systems are
overwhelmingly desktop systems based on PC standards.
These applications gain enormous flexibility from the
component integration features of Windows and its .NET
framework. Accordingly, QuickSilver targets this platform
mixture as its primary runtime environment, although we do
plan a port that will run in Linux settings under Mono. Our
initial focus is on large enterprise LANs such as corporations
might operate, but over time we do hope to tackle Internet
WAN scenarios. In what follows, we discuss QuickSilver
from the “ground up”, starting with the network layer, then

WS front-end

Services

Services

Services

WS front-end Services

Services

Services

WS front-end

WS front-end

WS front-end

WS front-end

Services

Services

Services

Services

Services

Services

Services

Services

Services

Figure 4: Tempest transforms the application into a
high-availability service that runs on a data center.

Figure 3: A web service composed of a front-end
and three back-end services.

discussing a new and flexible framework for endowing groups
with reliability properties, and finally explaining how these are
exposed to the end user through a new form of typed
communication channel.

Network layer. Up to now, we have discussed data centers.
Enterprise LAN systems pose different goals and architectural
considerations. For example, data center applications benefit
from Ricochet’s rapid message delivery in part because
Tempest cleans up any inconsistencies that arise between
clones. But in a LAN, the receivers in a group won’t be clones
and we can’t fall back on Tempest to deal with inconsistencies.
This means that the communication system will often need to
support stronger reliability models, such as virtual synchrony,
consensus, group authentication/security, or one-copy
serializability (these models are discussed in [5]).

In data centers application placement is tightly controlled,
hence groups will generally be small and will overlap in
regular ways. QuickSilver lives in a world of LAN groups,
which may be large and will often overlap in irregular ways.
Ricochet is optimized for time-critical latency, but in a LAN,
the more important metric is throughput. On the other hand
scalability in the number of groups will be critical: the
application programmer probably thinks of groups in terms of
publish-subscribe topics, hence a single node could easily
belong to an enormous number of groups, perhaps with
slightly different reliability properties for each.

QuickSilver’s network-layer protocols treat data
dissemination, basic reliability and rate control separately, and
provide strong properties such as the ones just mentioned at a
higher layer. The dissemination framework is optimized to
deliver messages using as few network operations as practical
– ideally, a single IP multicast, and indeed, if possible, a single
multicast into which multiple application-level messages have
been packed. Reliability is implemented on a regional basis
(similar to Ricochet), but uses a rotating token scheme, with a
further subdivision of each region into a set of “partitions” to
handle the case of a very large region: each partition has a
token of its own, and a secondary aggregating token runs
among leaders selected on a per-partition basis; a group
membership service tracks node status and handles overall
configuration. The token ring is also used by a novel rate
control mechanism that replaces traditional ACK/NACK flow

control. Packet loss is detected using data tracked by the
tokens, in a manner that aggregates across all the groups that
map to any given region, and recovery is peer-to-peer, between
nodes in the same region, with the sender involved only if an
entire region is lacking a message (for more details, see [12]).

Event Processing. Sustaining high performance in large-scale
configurations involves a difficult balancing act. The network
architecture described above is part of the story. But the actual
handling of events such as timers, incoming messages,
recovery tokens and control data was also critical. QuickSilver
uses a single-threaded event-driven architecture to eliminate
exposure to uncontrolled scheduler decisions. This freed us to
design a scheduling policy to handle situations where multiple
events occur simultaneously.

We mentioned earlier that inexpensive computing platforms
can easily be overwhelmed by high rates of incoming
messages, triggering bursty packet loss in the kernel. Recall
that Ricochet uses proactive repair packets to overcome such
losses : this incurs higher overhead, but allows Ricochet to
repair packet loss before most platforms would even detect a
problem. QuickSilver adopts a different approach: the system
is designed to minimize such occurrences using rate controllers
that estimate maximum sending rate and try to match it,
lowering the overall control traffic and system overhead, but
also pulls packets from the kernel as rapidly as possible,
reducing the risk that the socket queue might overflow.

Because QuickSilver cannot completely avoid transient
disruptive events such as garbage collection and scheduling, it
is not unusual for this event handler to confront long bursts of
queued packets. The question arises of which ones to process
first. It might seem as if a FIFO strategy would be best, but in
fact we found that such policies result in poor performance.

Experimentally, we discovered that versions of our
QuickSilver protocols were prone to convoy phenomena,
whereby throughput oscillates under heavy load. Perhaps this
should not be a surprise: researchers who developed earlier
systems have often suggested that such phenomena represent
fundamental barriers to scalability with high data rates. As it
turned out, however, we were able to control the problem, at
least under most conditions.

The approach we adopted is best understood by thinking in
terms of traffic on a high-speed throughway. Such a road can
achieve high capacity if cars are widely spaced but moving
rapidly. Closely spaced cars, however, are prone to virtual
traffic jams: one vehicle slows; the one behind it brakes
reactively, and a wave of congestion sweeps backwards up the
highway, ultimately creating a strange form of stop and go
traffic that may persist for long periods of time.

In QuickSilver, the “throughway” is the communication
platform itself, and the vehicles are the messages. We want
these to pass through our platform as smoothly as possible
without lingering. On the other hand, some forms of backlogs

Protocol 1

Protocol 3

Node

Protocol 2

Region

inter-region
protocol

intra-region
protocol

Figure 5: QuickSilver amortizes costs over many
groups. Lacking such an approac h, chaos can occur,
as is seen on the left, where each group builds its own
recovery infrastructure (here, a tree-like overlay).

are unavoidable. As just noted, if a receiver is temporarily
busy, messages pile up in the kernel; when QuickSilver
resumes execution, it reads all the queued data out of the
kernel before processing any of it to minimize the risk of
kernel buffer overloads. This tactic reduces the frequency of
packet loss, but doesn’t eliminate it; indeed such packet loss
that does occur will probably happen precisely at this moment.
Moreover, if a message was lost, QuickSilver must obtain the
missing data before it can deliver subsequent packets.

Small bursts of packets won’t pose much of a problem, but
longer convoys of delayed multicasts can have an impact that
snowballs through the system, causing nodes to act upon stale
state, and leading to redundant recovery traffic that further
aggravates the problem. These phenomena cause fluctuating
throughputs: they corresponded to periods of low throughput
when memory consumption soars , followed by periods of very
high and bursty throughput, mostly wasted on largely
redundant loss recovery. Our challenge is to minimize the
probability of this disruptive scenario.

Event prioritization is the key to doing so. In QuickSilver, the
highest priority task is to maintain a good degree of state
synchrony between nodes. If node A has a good idea of the
state of node B, A is unlikely to perform costly but
inappropriate actions such as sending repair packets to B when
B has long-since repaired missing data. On the other hand,
when data really does get dropped, we need to prioritize repair
packets over “new” multicasts, since those new messages must
wait for the gaps to be filled, in any case.

Accordingly, QuickSilver defines a three-level prioritization
scheme. Arriving messages are pulled rapidly from the kernel,
and then classified. The tokens QuickSilver uses to track node
status within each region are dispatched first. Next, repair
packets are dispatched and last, new incoming multicasts.
When combined first with rate control mechanisms that limit
the sending rate so that network interface cards and other
hardware components won’t get overloaded and second with
mechanisms for delaying the creation of messages until just
before their transmission ensuring that all transmitted packets
reflect the most recent state of the sender, this rather simple
“innovation” eliminated performance fluctuations. Details on
this and other engineering insights gained while building
QuickSilver are discussed in [4]; many should be applicable in
other systems.

Typed group endpoints. Just as the integration of Ricochet with
web services is important to making it easy for developers to
use, we believe that the integration of QuickSilver with the
powerful component integration framework supported by
Windows and .NET could make the technology accessible to a
very large user community that needs multicast and replicated
data. Accordingly, QuickSilver was developed to run as a
managed application under the .NET framework. This brings
immediate advantages : in Windows, end-user applications and
systems have access to very transparent component integration
tools, and benefit from high performance and strong type-

checking if all the components run within the managed
framework. But doing so also poses challenges. Windows
achieves much of the power of its integration framework by
leveraging type information. Yet the common language
runtime environment in Windows lacks any notion of a typed
communication channel expressive enough to capture notions
such as groups with strong reliability properties (like virtual
synchrony), strong security properties, or other behaviors.

To bridge this gap we implemented a new kind of typed
communication channel that integrates seamlessly into
Windows. Elements of the solution include a component
integration technology, somewhat similar to web services, but
designed for multi-point channels and capable of expressing
semantically-rich contracts, and a form of “shell extension”
that serves as the user interface. The idea is similar to the
mechanism used by Windows to bind file extensions to
programs supporting the corresponding file type. Basically,
each group has an associated type, which describes the
functionality and features offered by the group as well as
requirements placed on the clients. Similarly, applications
expose typed interfaces, which are verified against group types
by the runtime. This type system is accompanied by compiler
tools for generating and importing type information associated
with remote objects, offering the developer signature-based
application development and debugging support of the sort
familiar to any visual studio user, as well as static and dynamic
type checking.

We are als o able to support a novel form of user-mediated
component integration, which works in a manner familiar to
users of Windows applications such as “Winzip,” “News” or
the “MyPhotos” subsystem. Basically, we are able to portray
available group communication topics as a namespace that can
be browsed by the user. Right-clicking on a topic – a
communication group – brings up a list of applications that can
bind to this topic. The latter is determined by comparing the
type signatures of known types of applications with the type
signature of the topic. For example, a user could bind the
camera on a PC to a group through an application that
periodically snaps a photo and multicasts it. Various data
consuming applications would be coded separately and
registered with the runtime – for example, an application that
reads a photo from a group channel and then displays it as a
new desktop background image. The user would assemble the
desired configuration by a few mouse-clicks – in our example,
creating a live desktop background that updates each time a
new image is multicast in the group. Similarly, an incoming
video feed could be bound to a web page, a stock “ticker” to an
automated trading application, etc.

Extensible properties framework. Supporting these
application-visible typed group endpoints is a subsystem we
call the “properties framework” ([3]). This framework supports
a simple programming language that allows us to express
strong reliability properties (and, ultimately, security or other
properties) at a high level, similar in spirit to Lamport’s
Temporal Logic of Actions (TLA [8]). The idea is that each

different group can have its own associated properties, defined
through rules in the properties language. Thus, virtual
synchrony can live side by side with weaker properties (such
as the basic best-effort reliability property of QuickSilver’s
underlying scalable multicast), or stronger but more costly
ones such as state-machine consensus or even transactional
one-copy serializability, which requires synchronization with
persistent storage.

The framework automatically generates and deploys a
hierarchical protocol for each communication group based on a
set of generic mechanisms. The latter include traditional
“features” such as failure detection, tracking membership or
state transfer, along with a mechanism for aggregating and
disseminating control variables, some of which may have
characteristics such as monotonicity or atomicity, and either be
tied to local actions, or produced according to a set of rules.
Because different protocols use shared mechanisms, overhead
across protocols can be amortized as in [4]. By allowing
properties to be defined on a per-group basis, one can imagine
applications in which different subsystems use different
properties, yet benefit from a single shared framework.

To give the reader some intuition, in Table 1 and Table 2 we
list example properties and rules for a simple topic with a last-
copy recall semantics, i.e. such that messages are recovered in
a peer-to-peer manner, and eventually cleaned. Each property
has a name. A single instance of a property with such name
and for a given topic may exist at every level of a hierarchy,
ranging from nodes, through groups of nodes, up to the entire
topic. “Received” in the context of a node will thus represent
the set of messages received by that node, and in the context of
a group of nodes, messages received at any of them.

Default behaviors include aggregation (Agg) and propagation
(Msg). If a property is aggregated, its value at a given scope is
periodically aggregated over values in the sub-scopes of that
scope. This way, the value of “Received” in a LAN could be
aggregated over all nodes in it. The values of this property are
sets of message identifiers. Parameter “∪” specifies that
aggregation is done by merging such sets. Parameter “+”
specifies that the new values of a property should be merged
with the existing ones. For dissemination, “*” specifies that
values are propagated to each of the sub-scopes, and “select”
that they are split among the sub-scopes.

An important type of constraint is monotonicity (“Mono”). If a
property is monotonic, new values have to be aggregated over
values at least as fresh as those used in previous aggregations.
Additional constraints are placed also on members joining a
topic. In our example, applying this behavior to the “Stable”
property guarantees that it is non-decreasing, which prevents
message cleanup before it is delivered to all nodes. Bindings
determine how values of a property are bound to the actions of
the application. In our example, most properties are bound to
“standard” actions recv, fwd and clean, representing the
receipt, forwarding and cleanup of a message, respectively.

Finally, rules define how values of properties can be generated
from existing values of other properties. Rules are periodically
executed either at each scope (“*”), or only at nodes (“local”)
or for the entire topic (“global”). Target property is assigned a
value obtained by evaluating the given expression. Properties
in rules can be unqualified, representing the local instance of a
property at the scope at which a rule is executed, or qualified,
with “x” or “y”, keywords representing two halves into which
the scope can be subdivided. In the latter case, the rule applies
to every possible sub-division of the scope.

Name Value Type Behaviors Bindings
Received IdSet Agg(∪) Get [recv]
Cleaned IdSet Agg(∩) Get [clean]
Cached IdSet
Stable IdSet Agg(∩), Mono
Fwd Addr×IdSet +Msg(select) Add [fwd]
NoFwd Addr×IdSet +Msg(*) Del [fwd]
Clean IdSet +Msg(*), +Agg(∪) Set [clean]

Table 1. The properties for a very simple topic with peer-
to-peer message forwarding and cleanup.

Scope Property Expression
* Cached Received \ Cleaned
* Fwd(x) <y, Cached(x) \ Received(y)>
* NoFwd(x) <y, Received(y)>
local Stable Received
global Clean Stable

Table 2. The rules to accompany the properties in Table 1.

At the start of this section, we commented on our scalability
goals. QuickSilver scalable multicast achieves scalability for
reliable multicast delivery, but this doesn’t imply that the
properties framework will also scale well. Accordingly, an
important near-term goal for us is to develop scalable
implementations for the important classes of properties (such
as the ones listed above). We are focusing on virtual
synchrony, state machine replication and transactions, and will
report our experience in a future paper.

Status. Ricochet is available today, as is QuickSilver scalable
multicast; the Tempest system and the full QuickSilver
platform should both be completed sometime in late 2006.
Once QuickSilver’s properties framework and typed endpoint
mechanisms are working our plan is to integrate the platform
with presentation layers such as the web services eventing API
(it may be necessary to extend this standard, however, since as
explained in [10], it is written in a way that precludes true
multicast communication), toolkits for multiuser game
development, collaboration tools, and so forth. Beyond the
end of 2006, our focus will shift to security: we hope to show
that prior work on group security can be made more scalable
using the mechanisms available within the properties
framework.

III. PERFORMANCE
Our effort has emphasized performance, in the belief that ease
and speed of system development lures users, but that raw
speed and scalability are central to holding them over time.
However the most relevant metrics for performance depend
very much on the system and setting.

For our work on Ricochet and Tempest, the central goal is to
support a new kind of scalable time-critical system that will be
hosted on commodity data centers. Accordingly, the metrics
against which we measured our own accomplishments revolve
around these characteristics. In [6], we show that when
compared with other multicast substrates having similar
reliability properties, Ricochet can achieve as much as a three
orders of magnitude reduction in multicast delivery latency
while guaranteeing a very high (albeit probabilistic) level of
delivery reliability. Moreover, the distribution of delivery
latencies is smooth, offering the designer an intuitively
appealing model against which to work.

For Tempest, the question is not so much one of delay until
Ricochet delivers a message, but rather the perceived “quality
of service” for the services replicated using the methodology.
Although our work has not yet been completed, we have
already found that even with very simple gossip-based
consistency protocols, Tempest can augment the basic
Ricochet guarantees into higher level service guarantees [1].
These provide external clients of the service with extremely
high levels of perceived reliability and extremely good
timeliness properties, even when nodes fail or are restarted
while the system is in use.

Performance in QuickSilver focuses not so much on delay as
on raw throughput and stability under stress. In [4] we report
on experiments that stressed a 110 node QuickSilver
configuration with multicasts in up to 8000 active groups, and
showed it to tolerate well the common types of perturbances,
including bursty loss, node failures, churn, and several others.
Performance of the system with the full properties framework
in use has not yet been investigated, and represents our next
major target.

The work on QuickSilver reliable multicast showed that even
with small numbers of senders, we can sustain throughputs
close to 100Mbits/second, the speed of the cluster interconnect
we used. We were able to send roughly 9,000 1k byte packets
per second (and keep in mind that in many multicast systems, a
single message can contain multiple updates). Memory
consumption rises with the number of groups to which a node
belongs, but without becoming enormous, and memory costs
are sublinear in the number of groups. Moreover, although our
experimental configuration only had 110 nodes, the scalability
of the system seems to be extremely good, with no evidence of
insipient performance problems. We hypothesize that similar
performance could be achieved even with many hundreds of
nodes – and we hope to experiment with such configurations
as a serious user community emerges.

IV. CONCLUSIONS
New styles of distributed computing are emerging, and with
them the need for new and more powerful communications
options has arisen. The lack of solutions is inhibiting the
development of reliable, secure, self-managed applications,
and yet the displacement of critical applications to distributed
settings demands that we build such applications. We believe
that the Ricochet, Tempest and QuickSilver platforms shed
light on the real nature of the problem, and offer a possible
path to solutions that could be broadly useful even for
developers who lack any sort of special training in the theory
and development of reliable distributed systems and protocols.

All aspects of our work are available under public licenses, and
we welcome potential collaborators who might be in a position
to deploy QuickSilver or Ricochet in demanding settings.
Download instructions can be found at [9].

IV. ACKNOWLEDGEMENTS
We are grateful to Greg Morrisett, Robbert van Renesse, Einar
Vollset and Maya Haridasan, who offered a great many
comments and suggestions over the course of the project.

V. REFERENCES

1. A Scalable Services Architecture . Tudor Marian, Ken Birman, and

Robbert van Renesse. To appear in Proceedings of the IEEE Symposium
on Reliable Distributed Systems (SRDS 2006). Leeds, UK. October
2006.

2. PLATO:Predictive Latency-Aware Total Ordering. Mahesh
Balakrishnan, Ken Birman, and Amar Phanishayee. To Appear in
Proceedings of the SRDS 2006: 25th IEEE Symposium on Reliable
Distributed Systems, Leeds, UK. October 2006.

3. Properties Framework and Typed Endpoints for Scalable Group
Communication. Krzysztof Ostrowski, Ken Birman, Danny Dolev. In
Submission (July, 2006).

4. QuickSilver Scalable Multicast. Krzysztof Ostrowski, Ken Birman,
Amar Phanishayee. Cornell University Technical Report (April, 2006).

5. Reliable Distributed Systems Technologies, Web Services, and
Applications. Birman, Kenneth P. 2005, XXXVI, 668 p. 145 illus.,
Hardcover ISBN: 0-387-21509-3

6. Ricochet: Low-Latency Multicast for Scalable Time-Critical
Services. Mahesh Balakrishnan, Ken Birman, Amar Phanishayee, and
Stefan Pleisch. Cornell University Technical Report.

7. Slingshot: Time-Critical Multicast for Clustered Applications .
Mahesh Balakrishnan, Stefan Pleisch, Ken Birman. IEEE Network
Computing and Applications 2005 (NCA 05). Boston, MA

8. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Leslie Lamport. Addison-Wesley, 2003.

9. The QuickSilver project web site at Cornell, for downloads:
http://www.cs.cornell.edu/projects/QuickSilver/

10. Extensible Web Services Architecture for Notification in Large-Scale
Systems. Krzysztof Ostrowski, Ken Birman. To appear in International
Conference on Web Services (IEEE ICWS 2006).

11. Scalable Group Communication System, for Scalable Trust.
Krzysztof Ostrowski, Ken Birman. To appear in The First Workshop on
Scalable Trusted Computing (ACM STC 2006).

12. The Power of Indirection: Achieving Multicast Scalability by
Mapping Groups to Regional Underlays. Krzysztof Ostrowski, Ken
Birman, Amar Phanishayee. Cornell University Technical Report
(November, 2005).

