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ABSTRACT1 

As distributed systems scale up and are deployed into 
increasingly sensitive settings, demand is rising for a new 
generation of communications middleware in support of 
application-level critical-computing uses.  Ricochet, Tempest 
and QuickSilver are multicast-based systems developed to 
respond to this need.  Ricochet and QuickSilver are multicast 
platforms; both are exceptionally scalable and support fault-
tolerance properties that match closely with the needs of high-
availability applications. Ricochet was designed to support 
time-critical applications replicated for scalability on data 
centers and clusters.  These are typically coded in Java and run 
under Linux.  Tempest is layered over Ricochet and automates 
most tasks of programming services for data centers. In 
contrast, QuickSilver focuses on high throughput and is 
targeted towards very large deployments of desktop computing 
systems, in support of publish-subscribe, event notification or 
media dissemination applications. In this paper we offer an 
overview of the systems and some of the new systems 
embeddings that, we believe, make them far easier to use than 
was the case in prior multicast platforms. 
 

I. INTRODUCTION 
Distributed computing systems are confronting a wide range of 
challenges associated with limits of the prevailing service 
oriented architectures and platforms.  By  service oriented 
architectures, or SOAs, we refer to Web Services, CORBA 
and J2EE: the most popular standards for interconnecting 
client computing systems with servers over the Internet.  These 
invite the developer to interconnect systems that previously 
have been relatively incompatible.  They standardize such 
aspects as connection establishment, synchronous and 
asynchronous request invocation, and representation of 
application data in messages.  They support transactions, and a 
reliability model based on message queuing middleware. 
SOAs make it so easy to integrate applications that developers 
with almost no specialized distributed computing skills can 
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now create sophisticated distributed systems.  Industry leaders 
such as Bill Gates and Larry Ellison speak of a services 
“revolution”, and moves are underway to create new kinds of 
electronic health record systems, military command and 
control systems, government services systems, banking 
systems and a host of other similar applications that will use 
these standards. 
 
Yet as we deploy new generations of sensitive computing 
applications on SOAs, we’ll face tough technical challenges.  
Some of these systems will require high availability, and hence 
need a way to replicate data and application state.  Distributed 
security and management applications need ways to sense 
events occurring at many locations system-wide and to report 
those events to groups of actuators where appropriate actions 
may be triggered.  Some applications need to stream data at 
high rates to groups of recipients, a pattern seen in 
collaboration systems, computer gaming, embedded control 
systems, IPTV and other media delivery systems.  Some 
applications must guarantee rapid responsiveness, even as they 
scale up to accommodate potentially high loads.  Adaptive 
mechanisms are required to handle surges in demand.  Self-
monitoring/self-repair mechanisms are needed to automate 
problem diagnosis and repair after a crash or other disruption 
occurs.  Distributed security architectures need ways to 
replicate keys or security policies at groups of endpoints where 
those keys will be used to encrypt or decrypt traffic, and to 
update those kinds of information as conditions change.  
 
Unfortunately, existing development platforms offer limited 
options for solving the kinds of distributed communications 
problems just mentioned.  Our belief is that this is primarily a 
result of a communications issue: the service architecture 
standards have embraced point-to-point TCP connections to an 
overwhelming degree.  By placing such a strong emphasis on 
the client-server data pathway, SOAs have been inattentive to 
server-to-{set-of-clients} and server replication data patterns 
that arise in the cases just enumerated. 
 
Thus, for large classes of applications, a modern developer 
faces a tough choice.  One option is to work within the existing 
architectural standards and tools, but this implies that the 
system will be limited to the kinds of scalability options 
available in three-tier database architectures.  A second option 
is to simply abandon such goals as fault-tolerance, scalability, 
distributed coherent caching for high performance, or certain 
forms of distributed security.  And the third option is to build 



some form of non-standard, home-brew solution that departs 
from the most widely used standard tools and platforms, and 
hence will make the application harder to build, harder to 
deploy and operate, and ultimately more costly. 
 
At Cornell, a new research project is underway that seeks to 
break through these barriers by creating a fourth option.  Our 
goal is to create new communication solutions that: 
• Can be elegantly embedded into existing service-oriented 

platforms, in a way that will make it as easy to exploit 
these tools as it is to build client-server systems today. 

• Scale extremely well. One reason for the problems we’ve 
cited is that prior generations of reliable communications 
platforms scaled poorly (most critically, in the number of 
groups to which an application can belong). These systems 
need to scale in multiple dimensions: groups, processes, 
network size, data rates and message sizes. 

• Permit reliability and quality of service options to be 
tailored to match application requirements.  

• Perform extremely well. We seek to equal or exceed the 
performance developers could achieve with specialized 
hand-crafted solutions.  

 
This paper is limited in length, making it impossible to discuss 
these issues while also providing technical details for the 
multicast platforms reported below, Ricochet and QuickSilver, 
and for Tempest, the development tool that runs on Ricochet.  
Accordingly, in this paper we limit ourselves to a broad 
overview that touches on the major innovations of the effort 
but omits specifics such as details of protocol designs, 
engineering decisions, integration with the host platforms 
(Windows and Linux), and evaluation.  However, the 
interested reader will find this sort of detail for QuickSilver in 
[4, 3, 10, 11, 12], for Ricochet in [6, 7, 2] and for Tempest in 
[1]. These systems are available for no-fee download from 
Cornell’s web server [9], with source provided on request.  

II. TARGET ENVIRONMENT 
Early in our effort, we realized that even though multicast 
applications arise in many settings, the type of system 
appropriate for addressing server replication issues in a data 
center or cluster differs from the type of system needed in 
corporate LAN settings or the wide-area Internet.   

A. Ricochet 
Modern data centers consist of large numbers of relatively 
homogeneous nodes interconnected with high-speed, low 
latency switched networks to host applications that are cloned.  
Doing so allows work to be load-balanced either as requests 
arrive directly from web clients, or after they are vectored 
through a front-end that parallelizes them by issuing 
concurrent requests to one or more services.   The need for 
scalable multicast arises in the context of replicating the state 
of the cloned services.  Most data centers are moving to web 
services standards, and Linux and Java are the most common 
platforms used to build new applications in such settings.   

We targeted Ricochet to this environment, and started by 
asking ourselves what reliability, scalability and quality of 
service requirements arise in such settings: 
• Reliability.  We undertook a series of experimental studies 

aimed at quantifying the types of failures that actually 
occur in large data centers.  From this  we determined that 
packet loss is extremely uncommon in data center 
networks, but surprisingly easy to provoke within the 
relatively slower commodity operating systems that run on 
the inexpensive computing nodes popular in such settings.  
Moreover, when an overloaded operating system drops 
packets, it often drops several in a row; histograms of 
packet loss revealed that short bursty episodes of loss were 
common (these loss bursts rarely exceeded 20 packets).  
Node and application instability (crashes, freeze-up or 
temporarily sluggish operation) was also common.  
Knowing that these problems actually arise in practice, a 
reliable multicast communication layer should be designed 
to overcome them. 
Scalability.  When services are developed using modern 
tools, it is common for what the end-user sees as a single 
service to be implemented as a set of communicating 
components.  These are often grouped on a single node to 
exploit shared-memory or other high speed 
communication options.  Thus, when a service is cloned to 
scale it out, it is common to see sets of components that 
must be cloned, such that one instance of each will run on 
each of a set of nodes.  Moreover, caches are widely used 
to offload read-only work from heavily loaded servers 
such as databases or file systems, and these co-reside with 
applications that issue reads.   Accordingly, if multicasts 
are used to update the caches and to update the cloned 
server states, nodes within a data center will often 
“belong” to large numbers of heavily overlapping 
communication groups.  Publish-subscribe gives rise to a 
similar pattern, if one thinks of each topic as mapping to 
an underlying communication group.   
 
Accordingly, data centers that use multicast (or publish-
subscribe) need support for communication in large 
numbers of overlapping groups.  As the data center scales 
up, the aggregate load on the multicast system will rise; 
this makes it important that the implementation be fully 
decentralized.  This is important because most off-the-
shelf multicast products  vector multicast communication 
through some form of central server.  In the settings we 
care about, that server would become overloaded and 
emerge as a bottleneck.  However, groups will rarely 
become very large, because it is rare to clone a service 
onto more than a few tens of nodes – in dialog with 
companies such as Amazon, Google, eBay and others, 
we’ve heard of a few examples of very large groups, but 
many examples that require smaller-scale replication.  

• Time-criticality and other quality of service properties.  A 
major end-user objective in porting a service to a data 
center is to achieve rapid responsiveness for a much larger 
workload than would be possible with a single instance of 
the service, even on a high-speed computing node.  For 



this reason, rapid response is a key metric in the eyes of 
users – even users who don’t think of themselves as 
needing a “real time” solution.  The insight is probably 
obvious: one buys extra nodes to maintain rapid response 
despite higher load.  This time-criticality property is not 
supported in any existing system or product.  Many 
applications also require ordered delivery.  Only some 
applications require absolute reliability guarantees or 
“hard” real-time delivery; surprisingly often, a high 
quality solution that offers extremely good speed and 
scalability, but that might be unable to recover some small 
percentage of lost packets, is quite acceptable.  Instead, 
one would prefer an end-to-end consistency repair 
mechanism that can detect and repair inconsistent clones; 
such a mechanism would do double-duty, fixing 
application level problems caused by bugs, but also 
kicking in if a message is dropped infrequently. 

 
These goals and insights motivated our design of Ricochet and 
Tempest.  Ricochet implements a new time-critical multicast 
protocol that offers tunable but high reliability, can recover 
from bursty packet loss, scales extremely well in the number 
of groups to which each node belongs, and is particularly 
notable for guaranteeing rapid message delivery with very 
predictable latency distributions.  Tempest, built over 
Ricochet, automates the steps in cloning a web services 
application and provides end-to-end consistency checking and 
repair mechanisms that can recover the application if it suffers 
some form of transient fault. 
 
At the core of Ricochet is a new time -critical repair 
mechanism that employs lateral error correction [6]. This is a 
scheme whereby a receiver periodically computes an error 
correction packet by XOR-ing together packets it receives 
across some subset of groups it belongs to and then sending 
that packet to other receivers that belong in that same set of 
groups (Figures 1, 2). IP Multicast is used to transmit 
messages unreliably, and the error correction packets enable 
Ricochet to recover lost messages very quickly. Receivers can 
reconstruct any single missing packet from the error correction 
packets they receive, and detect multi-packet losses. Using an 
appropriate “stride” (meaning that the messages XOR-ed 
together in any given LEC packet are sufficiently separate 
from one-another in the receive sequence), Ricochet also 
overcomes bursty loss. 
 
Most lost packets are recovered by Ricochet within a few 
milliseconds through the proactive lateral error correction 
traffic. For the small percentage that can’t be recovered 
proactively, Ricochet uses reactive negative acknowledgments 
to request retransmissions of the packet from the sender, 
achieving any desired level of reliability on the multicast data. 
 
Ricochet achieves extreme scalability in the number of groups 
in the system, allowing nodes to join as many as a thousand 
groups without impairing loss recovery latencies. Whereas 
existing reliable multicast protocols discover packet loss with 
latency inversely proportional to the data rate at a single sender 

in a single group, Ricochet’s discovery latency is dependent on 
the total incoming data rate at a receiver, across all groups and 
all senders.  
 
Ricochet does not provide ordered message delivery on its own 
– this is done by a separate ordering layer called PLATO [2]. 
Traditional ordering protocols deliver messages to the 
application only after conservatively establishing the delivery 
order. In contrast, Plato belongs to a class of protocols which 
optimistically deliver messages to the application and rely on 
rollbacks to undo incorrectly ordered message deliveries.  
 
PLATO optimistically delivers only those messages for which 
it believes there to be little risk of out-of-order delivery. To 
assess this risk, it leverages several observations.  Keep in 
mind that IP Multicast messages are delivered almost 
simultaneously at all receivers in a data center network.  Thus, 
nodes are at risk of receiving messages in different order only 
when two messages from different senders are sent at almost 
the same time, or secondly, if one receiver loses a burst of 
messages in its kernel buffer and another doesn’t, causing a 
gap in the delivery sequence.  PLATO predicts the occurrence 
of these two events by buffering incoming messages long 
enough to observe the inter-arrival delays of consecutive 
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Figure 1: A collection of overlapping groups, with a 
sender transmitting multicasts in two groups.  

Figure 2: Ricochet introduces "lateral error correction", 
whereby error correction data is proactively multicast by 
other receivers in overlap regions.  Lost data is often 
recovered before the sender can detect the loss. 



messages. A small delay between consecutive messages 
predicts heightened likelihood of out-of-order arrival. 
 
To see this, notice that in the first case just mentioned, if two 
messages are multicast by two senders at around the same 
time, they will arrive at each receiver with a small inter-arrival 
delay. In the second case, if a receiver experiences a buffer 
overflow in its kernel, it will subsequently attempt to catch up 
by rapidly dequeueing packets into application space, resulting 
in a sequence of arrivals with very low delays in between. 
 
Hence, if two messages are separated by a sufficiently long 
gap, PLATO delivers the first without waiting for addit ional 
ordering information. On the other hand, if messages arrive in 
quick succession, PLATO withholds them from the application 
until it establishes the correct order.  This  is done by 
designating one group member as a sequencer node that 
periodically multicasts the canonical ordering for the group. 
 
In practice, the PLATO scheme delivers a large fraction of 
messages with very little delay (2 or 3 milliseconds), a smaller 
fraction with the delay of a conservative ordering protocol 
(tens of milliseconds), and a miniscule fraction (<1%) with a 
delay of a hundred milliseconds or more, consisting of 
optimistically delivered messages which were later found to be 
in incorrect order and rolled back. Together, PLATO and 
Ricochet exploit the natural properties of the underlying 
hardware to provide very fast communication in the average 
case.  The probabilistic techniques employed by the protocols 
scale very well in multiple dimensions. 

B. Tempest  
It is important to embed solutions into appropriate platforms in 
natural ways.  Ricochet is integrated with the Apache Axis2 
web services platform, but many users prefer higher-level 
tools.  Accordingly, we are building a new system called 
Tempest [1], which automatically transforms web services 
applications into cloned groups of servers (Figures 3, 4).  
These use Ricochet for update propagation, but also have a 
Tempest-provided mechanism for detecting crashes and 
restarting failed services, checkpointing, cold startup, and even 
detecting and repairing any data inconsistency that might arise 
at runtime.  The repair mechanism can compensate in the 
unlikely event that Ricochet is unable to recover a lost packet, 
but can also detect and repair many application-level problems 
that leaves one clone inconsistent with the others .  
 
Tempest accomplishes of this by intervening at two places.  
First, when a web service is invoked, Tempest substitutes its 
own invocation protocol for the one used by standard client-
side web services platforms; this protocol captures the 
invocation, adds a unique identifier and some other 
information, and then sends it via Ricochet.  The required stub 
can be inserted automatically in many cases.  Second, Tempest 
intervenes within the service itself.  The application developer 
is asked to manage any “distributed state” by storing it in a 
special collection classes inherited from the Tempest 

framework. The collection classes mimic the standard Java 
collections while the stored collection items mimic Java Beans, 
hence both should look familiar to many developers.  Knowing 
where the state for the service is stored, Tempest can access it 
to make checkpoints, compare states between components, etc.  
The whole mechanism is almost completely transparent to the 
developer.   
All aspects have been designed to ensure that a cloned time -

critical application will have excellent timing properties.   
Tempest thus enables componentized data center application 
development, where a programmer with few specialized 
distributed systems skills is able to build a high-performance, 
scalable, fault-tolerant, self-managed and self-repairing 
solution that scales out and achieves high performance even 
when subjected to heavy loads.  

C. QuickSilver  

In contrast to Ricochet, QuickSilver focuses on platform 
support for new kinds of client applications in which group 
communication is used for event and media stream delivery, or 
for the other kinds of purposes outlined at the outset of this 
paper.  Unlike the nodes in a data center, client systems are 
overwhelmingly desktop systems based on PC standards.  
These applications gain enormous flexibility from the 
component integration features of Windows and its .NET 
framework.   Accordingly, QuickSilver targets this platform 
mixture as its primary runtime environment, although we do 
plan a port that will run in Linux settings under Mono.  Our 
initial focus is on large enterprise LANs such as corporations 
might operate, but over time we do hope to tackle Internet 
WAN scenarios.  In what follows, we discuss QuickSilver 
from the “ground up”, starting with the network layer, then 
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Figure 4:  Tempest transforms the application into a 
high-availability service that runs on a data center. 

Figure 3: A web service composed of a front-end 
and three back-end services. 



discussing a new and flexible framework for endowing groups 
with reliability properties, and finally explaining how these are 
exposed to the end user through a new form of typed 
communication channel. 
 
Network layer. Up to now, we have discussed data centers.  
Enterprise LAN systems pose different goals and architectural 
considerations.  For example, data center applications benefit 
from Ricochet’s rapid message delivery in part because 
Tempest cleans up any inconsistencies that arise between 
clones.  But in a LAN, the receivers in a group won’t be clones 
and we can’t fall back on Tempest to deal with inconsistencies.  
This means that the communication system will often need to 
support stronger reliability models, such as virtual synchrony, 
consensus, group authentication/security, or one-copy 
serializability (these models  are discussed in [5]).   
 
In data centers application placement is tightly controlled, 
hence groups will generally be small and will overlap in 
regular ways.  QuickSilver lives in a world of LAN groups, 
which may be large and will often overlap in irregular ways. 
Ricochet is optimized for time-critical latency, but in a LAN, 
the more important metric is throughput.  On the other hand 
scalability in the number of groups will be critical: the 
application programmer probably thinks of groups in terms of 
publish-subscribe topics, hence a single node could easily 
belong to an enormous number of groups, perhaps with 
slightly different reliability properties for each. 
 
QuickSilver’s network-layer protocols treat data 
dissemination, basic reliability and rate control separately, and 
provide strong properties such as the ones just mentioned at a 
higher layer.  The dissemination framework  is optimized to 
deliver messages using as few network operations as practical 
– ideally, a single IP multicast, and indeed, if possible, a single 
multicast into which multiple application-level messages have 
been packed.  Reliability is implemented on a regional basis 
(similar to Ricochet), but uses a rotating token scheme, with a 
further subdivision of each region into a set of “partitions” to 
handle the case of a very large region: each partition has a 
token of its own, and a secondary aggregating token runs 
among leaders selected on a per-partition basis; a group 
membership service tracks node status and handles overall 
configuration.  The token ring is also used by a novel rate 
control mechanism that replaces traditional ACK/NACK flow 

control.  Packet loss is detected using data tracked by the 
tokens, in a manner that aggregates across all the groups that 
map to any given region, and recovery is peer-to-peer, between 
nodes in the same region, with the sender involved only if an 
entire region is lacking a message (for more details, see [12]).   
 
Event Processing. Sustaining high performance in large-scale 
configurations involves  a difficult balancing act.  The network 
architecture described above is part of the story.  But the actual 
handling of events such as timers, incoming messages, 
recovery tokens and control data was also critical.  QuickSilver 
uses a single-threaded event-driven architecture to eliminate 
exposure to uncontrolled scheduler decisions.  This freed us to 
design a scheduling policy to handle situations where multiple 
events occur simultaneously.   
 
We mentioned earlier that inexpensive computing platforms 
can easily be overwhelmed by high rates of incoming 
messages, triggering bursty packet loss in the kernel.  Recall 
that Ricochet uses proactive repair packets to overcome such 
losses : this incurs higher overhead, but allows Ricochet to 
repair packet loss before most platforms would even detect a 
problem.  QuickSilver adopts a different approach: the system 
is designed to minimize such occurrences using rate controllers 
that estimate maximum sending rate and try to match it, 
lowering the overall control traffic and system overhead, but 
also pulls packets from the kernel as rapidly as possible, 
reducing the risk that the socket queue might overflow.   
 
Because QuickSilver cannot completely avoid transient 
disruptive events such as  garbage collection and scheduling, it 
is not unusual for this event handler to confront long bursts of 
queued packets. The question arises of which ones to process 
first. It might seem as if a FIFO strategy would be best, but in 
fact we found that such policies result in poor performance.  
 
Experimentally, we discovered that versions of our 
QuickSilver protocols  were prone to convoy phenomena, 
whereby throughput oscillates under heavy load.  Perhaps this 
should not be a surprise: researchers who developed earlier 
systems have often suggested that such phenomena represent 
fundamental barriers to scalability with high data rates.  As it 
turned out, however, we were able to control the problem, at 
least under most conditions. 
 
The approach we adopted is best understood by thinking in 
terms of traffic on a high-speed throughway.  Such a road can 
achieve high capacity if cars are widely spaced but moving 
rapidly.  Closely spaced cars, however, are prone to virtual 
traffic jams: one vehicle slows; the one behind it brakes 
reactively, and a wave of congestion sweeps backwards up the 
highway, ultimately creating a strange form of stop and go 
traffic  that may persist for long periods of time.   
 
In QuickSilver, the “throughway” is the communication 
platform itself, and the vehicles are the messages. We want 
these to pass through our platform as smoothly as possible 
without lingering. On the other hand, some forms of backlogs 
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Figure 5: QuickSilver amortizes costs over many 
groups.  Lacking such an approac h, chaos can occur, 
as is seen on the left, where each group builds its own 
recovery infrastructure (here, a tree-like overlay).  



are unavoidable.  As just noted, if a receiver is temporarily 
busy, messages pile up in the kernel; when QuickSilver 
resumes execution, it reads all the queued data out of the 
kernel before processing any of it to minimize the risk of 
kernel buffer overloads.  This tactic reduces the frequency of 
packet loss, but doesn’t eliminate it; indeed such packet loss 
that does occur will probably happen precisely at this moment.  
Moreover, if a message was lost, QuickSilver must obtain the 
missing data before it can deliver subsequent packets. 
 
Small bursts of packets won’t pose much of a problem, but 
longer convoys of delayed multicasts can have an impact that 
snowballs through the system, causing nodes to act upon stale 
state, and leading to redundant recovery traffic that further 
aggravates the problem. These phenomena cause fluctuating 
throughputs: they corresponded to periods of low throughput 
when memory consumption soars , followed by periods of very 
high and bursty throughput, mostly wasted on largely 
redundant loss recovery. Our challenge is to minimize the 
probability of this disruptive scenario.   
 
Event prioritization is the key to doing so.  In QuickSilver, the 
highest priority task is to maintain a good degree of state 
synchrony between nodes.  If  node A has a good idea of the 
state of node B, A is unlikely to perform costly but 
inappropriate actions such as sending repair packets to B when 
B has long-since repaired missing data.    On the other hand, 
when data really does get dropped, we need to prioritize repair 
packets over “new” multicasts, since those new messages must 
wait for the gaps to be filled, in any case.   
 
Accordingly, QuickSilver defines a three-level prioritization 
scheme.  Arriving messages are pulled rapidly from the kernel, 
and then classified. The tokens QuickSilver uses to track node 
status within each region are dispatched first.  Next, repair 
packets are dispatched and last, new incoming multicasts. 
When combined first with rate control mechanisms that limit 
the sending rate so that network interface cards and other 
hardware components won’t get overloaded and second with 
mechanisms for delaying the creation of messages until just 
before their transmission  ensuring that all transmitted packets 
reflect the most recent state of the sender, this rather simple 
“innovation” eliminated performance fluctuations.  Details on 
this and other engineering insights gained while building 
QuickSilver are discussed in [4]; many should be applicable in 
other systems. 
 
Typed group endpoints. Just as the integration of Ricochet with 
web services is important to making it easy for developers to 
use, we believe that the integration of QuickSilver with the 
powerful component integration framework supported by 
Windows and .NET could make the technology accessible to a 
very large user community that needs multicast and replicated 
data. Accordingly, QuickSilver was developed to run as a 
managed application under the .NET framework. This brings 
immediate advantages : in Windows, end-user applications and 
systems  have access to very transparent component integration 
tools, and benefit from high performance and strong type-

checking if all the components run within the managed 
framework. But doing so also poses challenges.  Windows 
achieves much of the power of its integration framework by 
leveraging type information.  Yet the common language 
runtime environment in Windows lacks any notion of a typed 
communication channel expressive enough to capture notions 
such as groups with strong reliability properties (like virtual 
synchrony), strong security properties, or other behaviors.   
 
To bridge this gap we implemented a new kind of typed 
communication channel that integrates seamlessly into 
Windows.  Elements of the solution include a component 
integration technology, somewhat similar to web services, but 
designed for multi-point channels and capable of expressing 
semantically-rich contracts, and a form of “shell extension” 
that serves as the user interface.  The idea is similar to the 
mechanism used by Windows to bind file extensions to 
programs supporting the corresponding file type. Basically, 
each group has an associated type, which describes the 
functionality and features offered by the group as well as 
requirements placed on the clients. Similarly, applications 
expose typed interfaces, which are verified against group types 
by the runtime. This type system is accompanied by compiler 
tools for generating and importing type information associated 
with remote objects, offering the developer signature-based 
application development and debugging support of the sort 
familiar to any visual studio user, as well as static and dynamic 
type checking. 
 
We are als o able to support a novel form of user-mediated 
component integration, which works in a manner familiar to 
users of Windows applications such as “Winzip,” “News” or 
the “MyPhotos” subsystem.  Basically, we are able to portray 
available group communication topics as a namespace that can 
be browsed by the user. Right-clicking on a topic – a 
communication group – brings up a list of applications that can 
bind to this topic. The latter is determined by comparing the 
type signatures of known types of applications with the type 
signature of the topic. For example, a user could bind the 
camera on a PC to a group through an application that 
periodically snaps a photo and multicasts it. Various data 
consuming applications would be coded separately and 
registered with the runtime – for example, an application that 
reads a photo from a group channel and then displays it as a 
new desktop background image.  The user would assemble the 
desired configuration by a few mouse-clicks – in our example, 
creating a live desktop background that updates each time a 
new image is multicast in the group. Similarly, an incoming 
video feed could be bound to a web page, a stock “ticker” to an 
automated trading application, etc. 
 
Extensible properties framework. Supporting these 
application-visible typed group endpoints is a subsystem we 
call the “properties framework” ([3]). This framework supports 
a simple programming language that allows us to express 
strong reliability properties (and, ultimately, security or other 
properties) at a high level, similar in spirit to Lamport’s 
Temporal Logic of Actions (TLA [8]).  The idea is that each 



different group can have its own associated properties, defined 
through rules in the properties language. Thus, virtual 
synchrony can live side by side with weaker properties (such 
as the basic best-effort reliability property of QuickSilver’s 
underlying scalable multicast), or stronger but more costly 
ones such as state-machine consensus or even transactional 
one-copy serializability, which requires synchronization with 
persistent storage.   
 
The framework automatically generates and deploys a 
hierarchical protocol for each communication group based on a 
set of generic mechanisms. The latter include traditional 
“features” such as failure detection, tracking membership or 
state transfer, along with a mechanism for aggregating and 
disseminating control variables, some of which may have 
characteristics such as monotonicity or atomicity, and either be 
tied to local actions, or produced according to a set of rules. 
Because different protocols use shared mechanisms, overhead 
across protocols can be amortized as in [4]. By allowing 
properties to be defined on a per-group basis, one can imagine 
applications in which different subsystems use different 
properties, yet benefit from a single shared framework.  
 
To give the reader some intuition, in Table 1 and Table 2 we 
list example properties and rules for a simple topic with a last-
copy recall semantics, i.e. such that messages are recovered in 
a peer-to-peer manner, and eventually cleaned.   Each property 
has a name. A single instance of a property with such name 
and for a given topic may exist at every level of a hierarchy, 
ranging from nodes, through groups of nodes, up to the entire 
topic. “Received” in the context of a node will thus represent 
the set of messages received by that node, and in the context of 
a group of nodes, messages received at any of them.  
 
Default behaviors include aggregation (Agg) and propagation 
(Msg). If a property is aggregated, its value at a given scope is 
periodically aggregated over values in the sub-scopes of that 
scope. This way, the value of “Received” in a LAN could be 
aggregated over all nodes in it. The values of this property are 
sets of message identifiers. Parameter “∪” specifies that 
aggregation is done by merging such sets. Parameter “+” 
specifies that the new values of a property should be merged 
with the existing ones. For dissemination, “*” specifies that 
values are propagated to each of the sub-scopes, and “select” 
that they are split among the sub-scopes. 
 
An important type of constraint is monotonicity (“Mono”). If a 
property is monotonic, new values have to be aggregated over 
values at least as fresh as those used in previous aggregations. 
Additional constraints are placed also on members joining a 
topic. In our example, applying this behavior to the “Stable” 
property guarantees that it is non-decreasing, which prevents 
message cleanup before it is delivered to all nodes.  Bindings 
determine how values of a property are bound to the actions of 
the application. In our example, most properties are bound to 
“standard” actions recv, fwd and clean, representing the 
receipt, forwarding and cleanup of a message, respectively. 
  

Finally, rules define how values of properties can be generated 
from existing values of other properties. Rules are periodically 
executed either at each scope (“*”), or only at nodes (“local”) 
or for the entire topic (“global”). Target property is assigned a 
value obtained by evaluating the given expression. Properties 
in rules can be unqualified, representing the local instance of a 
property at the scope at which a rule is executed, or qualified, 
with “x” or “y”, keywords representing two halves into which 
the scope can be subdivided. In the latter case, the rule applies 
to every possible sub-division of the scope.  
 
Name Value Type Behaviors Bindings 
Received IdSet Agg(∪) Get [recv] 
Cleaned IdSet Agg(∩) Get [clean] 
Cached IdSet   
Stable IdSet Agg(∩), Mono  
Fwd Addr×IdSet +Msg(select) Add [fwd] 
NoFwd Addr×IdSet +Msg(*) Del [fwd] 
Clean IdSet +Msg(*), +Agg(∪) Set [clean] 

Table 1. The properties for a very simple topic with peer-
to-peer message forwarding and cleanup. 

Scope Property Expression 
* Cached Received \ Cleaned 
* Fwd(x) <y, Cached(x) \ Received(y)> 
* NoFwd(x) <y, Received(y)> 
local Stable Received 
global Clean Stable 

Table 2. The rules to accompany the properties in Table 1. 

At the start of this section, we commented on our scalability 
goals.  QuickSilver scalable multicast achieves scalability for 
reliable multicast delivery, but this doesn’t imply that the 
properties framework will also scale well.  Accordingly, an 
important near-term goal for us is to develop scalable 
implementations for the important classes of properties (such 
as the ones listed above).  We are focusing on virtual 
synchrony, state machine replication and transactions, and will 
report our experience in a future paper.   
 
Status. Ricochet is available today, as is QuickSilver scalable 
multicast; the Tempest system and the full QuickSilver 
platform should both be completed sometime in late 2006.  
Once QuickSilver’s properties framework and typed endpoint 
mechanisms are working our plan is to integrate the platform 
with presentation layers such as the web services eventing API 
(it may be necessary to extend this standard, however, since as 
explained in [10], it is written in a way that precludes true 
multicast communication), toolkits for multiuser game 
development, collaboration tools, and so forth.  Beyond the 
end of 2006, our focus will shift to security: we hope to show 
that prior work on group security can be made more scalable 
using the mechanisms available within the properties 
framework. 



III. PERFORMANCE 
Our effort has emphasized performance, in the belief that ease 
and speed of system development lures users, but that raw 
speed and scalability are central to holding them over time.  
However the most relevant metrics for performance depend 
very much on the system and setting. 
 
For our work on Ricochet and Tempest, the central goal is to 
support a new kind of scalable time-critical system that will be 
hosted on commodity data centers.  Accordingly, the metrics 
against which we measured our own accomplishments revolve 
around these characteristics. In [6], we show that when 
compared with other multicast substrates having similar 
reliability properties, Ricochet can achieve as much as a three 
orders of magnitude reduction in multicast delivery latency 
while guaranteeing a very high (albeit probabilistic) level of 
delivery reliability. Moreover, the distribution of delivery 
latencies is smooth, offering the designer an intuitively 
appealing model against which to work.   
 
For Tempest, the question is not so much one of delay until 
Ricochet delivers a message, but rather the perceived “quality 
of service” for the services replicated using the methodology.  
Although our work has not yet been completed, we have 
already found that even with very simple gossip-based 
consistency protocols, Tempest can augment the basic 
Ricochet guarantees into higher level service guarantees [1].  
These provide external clients of the service with extremely 
high levels of perceived reliability and extremely good 
timeliness properties, even when nodes fail or are restarted 
while the system is in use. 
 
Performance in QuickSilver focuses not so much on delay as 
on raw throughput and stability under stress.  In [4] we report 
on experiments that stressed a 110 node QuickSilver 
configuration with multicasts in up to 8000 active groups, and 
showed it to tolerate well the common types of perturbances, 
including bursty loss, node failures, churn, and several others.  
Performance of the system with the full properties framework 
in use has not yet been investigated, and represents our next 
major target. 
 
The work on QuickSilver reliable multicast showed that even 
with small numbers of senders, we can sustain throughputs 
close to 100Mbits/second, the speed of the cluster interconnect 
we used.  We were able to send roughly 9,000 1k byte packets 
per second (and keep in mind that in many multicast systems, a 
single message can contain multiple updates). Memory 
consumption rises with the number of groups to which a node 
belongs, but without becoming enormous, and memory costs 
are sublinear in the number of groups.  Moreover, although our 
experimental configuration only had 110 nodes, the scalability 
of the system seems to be extremely good, with no evidence of 
insipient performance problems. We hypothesize that similar 
performance could be achieved even with many hundreds of 
nodes – and we hope to experiment with such configurations 
as a serious user community emerges. 

IV. CONCLUSIONS 
New styles of distributed computing are emerging, and with 
them the need for new and more powerful communications 
options has arisen.  The lack of solutions is inhibiting the 
development of reliable, secure, self-managed applications, 
and yet the displacement of critical applications to distributed 
settings demands that we build such applications.  We believe 
that the Ricochet, Tempest and QuickSilver platforms shed 
light on the real nature of the problem, and offer a possible 
path to solutions that could be broadly useful even for 
developers who lack any sort of special training in the theory 
and development of reliable distributed systems and protocols. 
 
All aspects of our work are available under public licenses, and 
we welcome potential collaborators who might be in a position 
to deploy QuickSilver or Ricochet in demanding settings.  
Download instructions can be found at [9]. 
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